Wadge and Lipschitz Games

Definition 1. Let \(\varphi : S \to T \) be a function between non-empty pruned Trees (no terminal nodes).
- \(\varphi \) is called monotone, if \(s \subseteq s' \Rightarrow \varphi(s) \subseteq \varphi(s') \) and \(\text{continuous} \), if it is monotone and for all \(x \in [S] : \lim_{n \to \infty} \varphi(x \upharpoonright n) = \infty \).
- \(\varphi \) is called Lipschitz, if it is monotone and for all \(s \in S : lh(s) = lh(\varphi(s)) \). \(\varphi \) is called a contraction if \(lh(\varphi(s)) = lh(s) + 1 \).
- For monotone functions \(\varphi \), let \(D_\varphi = \{ x \in [S] | \lim_{n \to \infty} lh(\varphi(x \upharpoonright n)) = \infty \} \) and \(f_\varphi : D_\varphi \to [T] \) be defined as \(f_\varphi(x) = \bigcup_{n \in \omega} \varphi(x \upharpoonright n) \).

Obviously \(\varphi \) is continuous iff \(D_\varphi = [S] \).

Bemerkung 1. If \(\varphi \) is Lipschitz, then:
- For all \(x \in [S] \) we have \(\lim_{n \to \infty} lh(\varphi(x \upharpoonright n)) = \lim_{n \to \infty} lh(x \upharpoonright n) = \infty \) and thus \(\varphi \) is continuous.
- For all \(x, y \in [S] \), if we have \(x \upharpoonright n = y \upharpoonright n \), then clearly \(f_\varphi(x) \upharpoonright n = f_\varphi(y) \upharpoonright n \). It follows, that \(d(f_\varphi(x), f_\varphi(y)) \leq d(x, y) \), which makes \(f_\varphi \) a Lipschitz function (in the usual sense) with constant \(\leq 1 \).
- Conversely, if \(f : [S] \to [T] \) has Lipschitz constant \(\leq 1 \), then for all \(x, y \in [S] \) we have \(d(f(x), f(y)) \leq d(x, y) \), which means \(x \upharpoonright n = y \upharpoonright n \Rightarrow f(x) \upharpoonright n = f(y) \upharpoonright n \) and therefore \(f \upharpoonright S =: \varphi \) is well defined, monotone and Lipschitz in our sense.

- A Function \(f : [S] \to [T] \) with Lipschitz constant \(\leq \frac{1}{2} \) : that is, we have \(x \upharpoonright n = y \upharpoonright n \Rightarrow f(x) \upharpoonright (n+1) = f(y) \upharpoonright (n+1) \)

is similarly induced by a contraction.

Definition 2. Let \(X \) be a topological space and \(F \subseteq X \) a family of functions closed under composition and containing the identity and all constant functions. Let \(A, B \subseteq X \), then \(A \) is \(F \)-reducible to \(B \) - \(A \leq_F B \) - iff there is \(f \in F \) such that \(A = f^{-1}(B) \).

The conditions for \(F \) imply, that \(\leq_F \) is reflexive and transitive. Set \(A \equiv_F B \Leftrightarrow A \leq_F B \land B \leq_F A \). We call \([A]_F := \{ B \mid B \equiv_F A \} \) the \(F \)-degree of \(A \).

Note that \(A \leq_F B \Leftrightarrow A \leq_B B \leq_F B \).

The dual of \([A]_F \) is \([A]^C \). A set \(A \) is called \(F \)-self-dual iff \(A \equiv_F A^C \). The notion can be extended to \(F \)-degrees.

\(\leq_F \) is a partial order on \(F \)-degrees.

If \(F \subseteq G \), then \(\leq_F \) is coarser than \(\leq_F \). We have:

\[A \leq_F B \Rightarrow A \leq_G B \quad A \text{ is } F\text{-self-dual} \Rightarrow A \text{ is } G\text{-self-dual} \quad [A]_F \subseteq [A]_G \]

Also, the dual to \([X]_F = \{ X \} \) is \([\emptyset]_F = \{ \emptyset \} \). Obviously for every set \(A \) we have \(X \leq_F A \) and \(\emptyset \leq_F A \) (both because we have constant functions).

Definition 3. The Lipschitz game \(G^L(A, B) \) for \(A, B \subseteq \omega^\omega \) is the game

<table>
<thead>
<tr>
<th>I</th>
<th>a_0</th>
<th>a_1</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>b_0</td>
<td>b_1</td>
<td>...</td>
</tr>
</tbody>
</table>

where player I wins iff

\[a = (a_i)_{i \in \omega} \in A \Leftrightarrow b = (b_i)_{i \in \omega} \in B. \]

Theorem 1. The Lipschitz game \(G^L(A, B) \) is equivalent to a game \(G(C). \) The payoff set \(C \) is Borel iff \(A \) and \(B \) are Borel.

Proof. Define \(A \cup B := \{(a_0, b_0, a_1, b_1, a_2, b_2, ...) \mid (a_i) \in A, (b_i) \in B \} \). Player I wins iff \(a \in A^C \) and \(b \in B \), or \(a \in A \) and \(b \in B^C \). That means \(G^L(A, B) = G((A^C \cup B) \cup (A \cup B^C)) := G(C) \).

For Borel: Observe, that \(A \cup B \) is a basic set iff \(A, B \) are basic sets. Proceed with unions and intersections. \(\square \)

Let \(L \) be the set of Lipschitz functions on \(\omega^\omega \).

Theorem 2.

1. If wins \(G^L(A, B) \Rightarrow A \leq_L B \).
2. \(L \) wins \(G^L(A, B) \Rightarrow B^C \leq_L A \).

Proof.

1. A winning strategy for II is a function \(\varphi : \omega^\omega \to \omega^\omega \) with \(s \subseteq t \Rightarrow \varphi(s) \subseteq \varphi(t), lh(s) = lh(\varphi(s)) \) and: if there is \(a \in A \) (resp. \(A^C \)) with \(a \upharpoonright n = s \), then there is \(b \in B \) (resp. \(B^C \)) with \(b \upharpoonright n = \varphi(s) \).

Hence, a winning strategy exists iff there is a Lipschitz function \(f_\varphi : \omega^\omega \to \omega^\omega \) with \(f^{-1}(B) = A \), i.e. iff \(A \leq_L B \).

2. A winning strategy for I on the other hand is a similar function \(\varphi \) with \(lh(\varphi(s)) = lh(s) + 1 \) and: if there is \(b \in B^C \) (resp. \(B \)) with \(b \upharpoonright n = s \), then there is \(a \in A \) (resp. \(A^C \)) with \(a \upharpoonright (n+1) = \varphi(s) \).

Hence, a winning strategy yields a contraction \(f_\varphi \) with \(f^{-1}(A) = B^C \), i.e. \(B^C \leq_L A \). \(\square \)

Note, that the converse for 2. doesn’t work, since a function witnessing \(B^C \leq_L A \) need not necessarily be a contraction and thus doesn’t necessarily represent a winning strategy.
Definition 4. The Wadge game \(G^X_W(A, B) \) is a variant of the Lipschitz game, where player II is allowed to pass; i.e. he is allowed to play an Element \(p \notin X \) which is disregarded when forming the sequence \(b \). However, he has to move infinitely often.

Theorem 3. The Wadge game \(G_W(A, B) \) is equivalent to a game \(G(C) \).

Proof. Similar as above, but more complicated.

Let \(W \) be the set of continuous maps on \(\omega X \).

Theorem 4. 1. \(\text{II wins } G_W(A, B) \iff A \leq_W B \)

2. \(\text{I wins } G_W(A, B) \Rightarrow B^C \leq_L A \Rightarrow B^C \leq_W A \).

Proof. 1. Assume \(\tau : \omega X \to X \cup \{p\} \) a strategy for II. Define \(\hat{\tau} : \omega X \to \omega X \) as the restriction to proper moves, i.e. recursively:

\[
\hat{\tau}(s) = \begin{cases}
\emptyset & s = \emptyset \\
\hat{\tau}(s | lh(s) - 1) \tau(s) & \tau(s) \neq p \\
\hat{\tau}(s | lh(s) - 1) & \text{otherwise}.
\end{cases}
\]

Clearly, \(\hat{\tau} \) is monotone, and since player II can play infinitely many elements from \(X \), \(\hat{\tau} \) is continuous. Conversely, for a continuous function \(\varphi \) we can define a strategy \(\tau \) with \(\hat{\tau} = \varphi \). Obviously, \(\tau \) is a winning strategy if \(\tau \) witnesses \(A \leq_W B \).

2. Assume I has a winning strategy. Since II can pass (more or less) as often as he wants, this strategy yields a family of contradictions witnessing \(\neg B \leq_L A \).

Definition 5. The semi-linear ordering principle \(\text{SLO}^F(X) \) for a set of (appropriate) functions \(F \) on \(\omega X \) is the statement:

\[
\forall A, B \subseteq \omega X : A \leq_F B \text{ or } B^C \leq_F A
\]

Assume \(\text{SLO}^F(X) \) holds. Then if \(A \) and \(B \) are incomparable, we get \(A \equiv_F B^C \) and thus for every \(C \neq_F A, B \) we get \(C <_F A, B \) or \(A, B <_F C \).

Hence, the name semi-linear.

Wadge’s Lemma. Let \(A \) be a set of subsets of \(\omega \omega \) for which the Lipschitz-game is determined (e.g. the Borel sets). Then \(\text{SLO}^F \) (and thus \(\text{SLO}^W \) as well) holds on \(A \).

Theorem 5. Let \(F \supseteq L \) be a reducibility notion (e.g. \(F = W \)).

(a) \(\text{SLO}^L \Rightarrow \text{SLO}^F \) (for any set of subsets)

(b) If \(\text{SLO}^F \) holds (for any set of subsets), then any self-dual \(F \)-degree \([A]_F \) is comparable with all other degrees.

(c) Assume \(\text{SLO}^L \). If \([A]_F \) is non-self-dual, then \([A]_F = [A]_L \).

Let \(A \oplus B := (A^c \cup B) \cup (1 - B) \).

Proof. (a) clear

(b) clear

(c) Obviously \([A]_F \supseteq [A]_L \). Assume \(B \in [A]_F \setminus [A]_L \). Then either \(B \leq_L A \) or \(A \leq_L B \): Assume \(A, B \) are incomparable, then \(A \equiv_L B^C \) and thus \(A \equiv_F B^C \), contradiction to non-self-dual.

If \(B \leq_L A \), then \(B \oplus B^C \in [A]_F \). Since \(A \leq_F B \) and \(B \leq_F B \oplus B^C \), it follows that \(A \leq_F B \oplus B^C \). On the other hand, \(A \leq_L B \) therefore \(B^C \), \(B \leq_L A \) and thus \(B \oplus B^C \leq_L A \).

Analogously, if \(A \leq_L B \), then \(A \oplus A^C \in [A]_F \). Since for any set \(C \oplus C^C \) is self-dual, it follows, that \(A \) is \(F \)-equivalent to a self-dual set, contradiction.