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Abstract

In my PhD, I want to contribute to developing an open archive of formalizations, a common and
open infrastructure for managing and sharing formalized mathematical knowledge represented as
theories, definitions, and proofs, based on a uniform foundation-independent representation format
for libraries, integrate existing formal libraries based on arbitrary logical systems into this archive
and develop methods to efficiently transfer and share information between different libraries and
logical foundations.
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1 Introduction and Motivation

In the last decades, the formalization of mathematical knowledge (and the verification and automation
of formal proofs) has become of ever increasing interest. Formal methods nowadays are not just used
by computer scientists to verify software and hardware as well as in program synthesis, but – due to
problems such as Kepler’s conjecture [1], the classification theorem for finite simple groups [2], etc. –
are also becoming increasingly popular among mathematicians in general.

By now, there is a vast plurality of formal systems and corresponding libraries to choose from. However,
almost all of these are non-interoperable, because they are based on differing, mutually incompatible
logical foundations (e.g. set theories, higher-order logic, variants of type theory etc.), library formats,
library structures, and much work is spent developing the respective basic libraries in each system.

Moreover, since a library in one such system is not reusable in another system, developers are forced
to spend an enormous amount of time and energy developing basic library organization features such
as distribution, browsing/search or change management for each library format; all of which binds
resources that could be used to improve core functionality and library contents instead.

One reason for the incompatibility is the widespread usage of the homogeneous method1, which fixes
some logical foundation with all primitive notions (e.g. types, axioms, inference rules) and uses con-
servative extensions of this foundation to allow for modeling some specific domain knowledge. While
homogeneous reasoning is conveniently implementable and verifiable, it implies that a lot of work is
needed just to model the basic domains of discourse necessary for mathematics, such as real numbers,
algebraic theories, etc. Moreover, the resulting formalizations are actually less valuable to mathemati-
cians, since they are intimitely dependent on (and framed in terms of) the underlying logic, making it
virtually impossible to move the results between different foundations or to abstract from them.

In contrast, mathematical practice favors the heterogeneous method, as exemplified by the works of
Bourbaki [3]. In heterogeneous reasoning, theories are used to introduce new primitive notions and
the truth of some proposition is relative to a theory (as opposed to absolute with respect to some
foundation). This method is closely related to the “little theories” paradigm [4] which prefers to state
each theorem in the weakest possible theory, thus optimizing reusability of mathematical results. Even
though in theory, all of mathematics can be reduced to first principles – most prominently first-order
logic with (some extension of) ZFC – it is usually carried out in a highly abstract setting that hides
the foundation, often rendering it irrelevant and thus allowing it to be ignored.

Correspondingly, there is an inconvenient discrepancy between the currently existing formal libraries
and the way (informal) mathematics is usually done in practice. Furthermore, the available formal
knowledge is distributed among dozens of different mutually incompatible formal library systems with
considerable overlap between them.

What we envision instead is a universal archiving solution for all formal knowledge, that

1. does not depend on a specific logical foundation,

2. can import libraries from different formal systems, allowing one to choose which system to use
for generating new content,

3. allows for abstracting from and transferring results between differing foundations and library
structures and

4. is capable of identifying equivalent/identical results in different libraries.

In my PhD, I want to contribute to realizing such a universal library system.

2 State of the Art

The attempt to systematically formalize both mathematical knowledge and its semantics goes back
at least to the seminal work by Bertrand Russell and Albert North Whitehead [5]. In the 1950s and

1The terminology homogeneous/heterogeneous is due to Florian Rabe, unpublished.
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1960s, computer systems were added to the tool chest for this endeavour, shifting the focus to designing
foundations that combine both machine-friendliness and human readability. This enabled automated
theorem proving, thanks to ideas going back to Allen Newell, Herbert A. Simon, and Martin Davis.
This has been most succesful for first-order logic and related systems. For more expressive languages,
the verification of human-written formal proofs has been the more successful approach, going back
to John McCarthy, Nicolaas Govert de Bruijn, Robin Milner, and Per Martin-Löf. Modern proof
assistants usually combine both approaches, generally verifying user input interactively and employing
automation for routine proof steps whenever possible.

Since developing sophisticated proof systems requires both a lot of practical work and a high level of
theoretical knowledge, most popular proof assistants have invested a large amount of time and energy
into building their systems. Consequently, formalization within one such system pays off mostly at
large scales, calling for a community effort to extend the corresponding formal libraries. In practice,
however, the availability of many different and mutually incompatible systems – each with their own
advantages and disadvantages – has instead driven towards ever increasing specialization within the
formal mathematics community, resulting in lots of different libraries with considerable (and from a
heterogeneous point of view unnecessary) overlap of actual content.

A more extensive summary of the state of the art can be found in [6] by the supervisors of this proposal.

2.1 Foundations

Overview The notion of a foundation goes back to the foundational crisis of mathematics at the
beginning of the 20th century. Resulting from a general confusion regarding the ontological status
of informally defined objects like infinitesimals in real analysis, non-euclidean geometries and sets as
objects of study in their own right, as well as debates over the validity of certain non-constructive
proof techniques of ever growing abstraction and intricacy, the idea developed to find a formal, logical
basis, that fixes both an ontology as well as an unambiguous notion of what constitutes a valid proof.

By now, it is generally accepted within the mathematical community, that the answer to this problem
is the combination of first-order logic and (some system of) set theory. However, already going back
to Principia Mathematica by Russell and Whitehead (which can be seen as an early variant of type
theory), alternative foundations have been around.

There’s an inherent trade-off in every such foundation with respect to their complexity and expressive-
ness. Theoretically, a foundation should be simple with very few primitive notions, to make reasoning
about the foundation more convenient and establish trust in its consistency. On the other hand, since
a foundation should ultimately establish a framework for all of mathematics, it should be as expressive
as possible to allow mathematicians to talk about all of the desired objects and realms in terms of the
foundation. This trade-off naturally lead to a large diversity of different foundations, which nowadays
are used in different proof assistants.

All of these systems fix one specific foundation as a basis for their specification language, usually
variants of either constructive type theory, higher-order logic or (as implicitely used in mathematics)
first-order set theory. The constructive type theories are mostly based on Martin-Löf type theory [7]
or the calculus of constructions [8] and make use of the Curry-Howard correspondence [9, 10] to treat
propositions as types (and proofs as λ-terms). Systems include Nuprl [11], Agda [12], Coq [13], and
Matita [14]. The second group of systems go back to Church’s higher-order logic [15] and include
HOL4 [16], ProofPower [17], Isabelle/HOL [18], and HOL Light [19].

Since type theories and higher-order logics are more conveniently machine implementable, systems
using set theories are noticably rarer. These are e.g. Mizar [20], Isabelle/ZF [21], and Metamath [22].

The foundation of the PVS system (see Section 4.4.1) includes a variant of higher-order logics, but
has been specifically designed to have a set theoretic semantics. The IMPS system [23] is based on
a variant of higher-order logic with partial functions. The foundation of ACL2 [24] is an untyped
language based on Lisp.

Heterogeneous Reasoning As mentioned in the introduction, even though all of mathematics is
assumed to be reducible to some foundation, the way mathematics is usually practiced is according to
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the heterogeneous method, in which all foundational aspects are “hidden” and left implicit, unless
necessary in the respective context. One major advantage of this method, in which theories are used to
introduce new primitive notions, is that (in connection with the little theories approach) it allows for
reusing mathematical results and moving them along theory morphisms (i.e. truth-preserving maps)
between theories. This approach has been applied successfully in software engineering and algebraic
specification, where formal module systems are used to build large theories out of little ones, e.g., in
SML [25] and ASL [26].

To accomodate for this more convenient style of reasoning, most formal systems have specific features
that introduce some form of heterogeneity either explicitely or implicitely. Explicit features include
e.g. “locales” in Isabelle, “parametric theories” in PVS, “modules” in Coq, or “structures” in Mizar.
The IMPS system [23] is somewhat unique in so far, as it was designed specifically with heterogeneous
reasoning in mind.

To use the heterogeneous method implicitely, the user introduces a new formal construct (such as real
numbers) by defining them in terms of existing ones (e.g. the usual construction via equivalence classes
on Cauchy sequences) and proving the actually relevant (i.e. construction independent) theorems about
them (e.g. field axioms, topological completeness). Finally, the user can rely on the proven properties
alone, without ever needing to expand the concrete definition originally implemented, which in the
process is rendered irrelevant for all practical purposes.

To enable implicit heterogeneity, the system has to provide corresponding definition principles. Exam-
ples include type definitions in the HOL systems, provably terminating functions in Coq or Isa-
belle/HOL, or provably well-defined indirect definitions in Mizar. However, it should be noted, that
such implicit heterogeneous definitions are usually internally expanded into conservative extensions
of the foundation. Alternatively, several data types provide additional way to use heterogeneity im-
plicitely. These include (Co)inductive types and record types e.g, as done by Mizar structures and
with Coq records in the Mathematical Components project [27]. This has the additional advantage,
that it allows for computation within the foundation.

The Incompatibility Problem The homogeneous method (in combination with implicit hetero-
geneity) has an obvious advantage: Since the foundation is fixed and can not be extended by new
axioms, the trusted code base remains fixed as well. Furthermore, is allows integrating computational
methods e.g. to reason about equality, without having to tediously instantiate and apply the corre-
sponding axioms. However, it has the major disadvantage of making reuse of formalized knowledge
difficult, if not impossible. Since the techniques for implicit heterogeneity are elaborated on the basis
of the foundation, the actual heterogeneous structure of some fragment of implemented knowledge is
difficult to identify. Furthermore, since different systems offer different techniques to introduce im-
plicit heterogeneity, the construction method used in one system can often not be easily translated
into another system. Their elaborated implementations themselves are again framed in terms of the
foundation (or an intrinsic part thereof), and are consequently useless for a system based on a differing
foundation.

Even though a fixed foundation is therefore reasonable for an individual formal system, if we envision
a universal library of mathematics – a major goal of formal mathematics going back at least to the
QED project and manifesto [28] of 1994 – this is the wrong approach. Furthermore, different areas
of mathematics favor different foundations (such as category theory, specifically in algebra), as do
different communities dealing with formalizing mathematics, whether due to technical reasons or simply
familiarity. Thus, formal libraries would profit from foundational pluralism, i.e., the ability to
support multiple foundations in a single universal library.

2.2 Formal Libraries

Overview Usually, formal systems have some notion of a library, a collection of formalizations
(usually just the corresponding source files) that can be handled in specific ways – imported and
used when creating new content, collectively exported, etc. Most systems are distributed with some
base library providing the most useful and ubiquitous settings of interest, such as Booleans or number
spaces, and often maintain additional, community-created libraries with more advanced contents.
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The Isabelle and the Mizar groups maintain one centralized library each – the “Archive of Formal
Proof” [29] and the “Mizar Mathematical Library” [30], respectively. The Coq group maintains a
similar set of contributions. These libraries contain individual formalizations with relatively few inter-
dependencies. Other libraries are generated and maintained by communities apart from the developers
of the system, however, these are still often valuable in their own right, such as Tom Hales’s formaliza-
tions in HOL Light for the Kepler conjecture [1] and Georges Gonthier’s work in Coq for the recently
proved Feit-Thompson theorem [31]. John Harrison’s formalizations in his HOL Light system [19] and
the NASA PVS library [32] have a similar flavor although they were not motivated by a single theorem
but by a specific application domain. The latter is one of the biggest decentralized libraries, whose
maintenance is disconnected from that of the system.

As mentioned, most of these systems are based on the homogeneous method. However, there are some
libraries that are intrinsically heterogeneous, such as the IMPS library [33], the LATIN logic library
[34] developed at KWARC (see Section 2.4.2) and the TPTP library [35] of challenge problems for
automated theorem provers. Unfortunately, none of these enjoys the level of interpretation, deduction,
and computation support developed for individual fixed foundations.

The OpenTheory format [36] offers some support for heterogeneity in order to allow moving theorems
between systems for higher-order logic (specifically HOL Light, HOL4, and ProofPower). It provides a
generic representation format for proofs within higher-order logic that makes the dependency relation
(i.e., the operators and theorems used by a theorem) explicit. The OpenTheory library comprises
several theories that have been obtained by manually refactoring exports from HOL systems.

Library Integration There are two problems concerning library integration. The first is, given a
single library, refactoring its contents to increase modularity. This results in a “more heterogeneous”
set of theories, thus making it easier to reuse and blowing up the corresponding theory graph to make
shared or inherited theories and results more visible and explicit. An attempt at giving a formal
calculus for theory refactoring has recently been published [37].

The second problem is, given two or more libraries, to integrate them with each other, so that
knowledge formalized in one of them can be reused in, translated to or identified with contents of the
others. In the best case, two libraries might even be merged into a single library with ideally no
redundant content.

No strong tool support is available for any of these facets. The state-of-the-art for refactoring a single
library is manual ad hoc work by experts, maybe supported by simple search tools (often text-based).
Also, the widespread use of the homogeneous method makes integrating and merging libraries in
different systems extremely difficult, since usually basic concepts in one foundation cannot be directly
translated to corresponding concepts in the other [38].

This is despite the large need for more integrated and easily reusable large libraries. For example, in
Tom Hales’s Flyspeck project [1], his proof of the Kepler conjecture is formalized in HOL Light. But
it relies on results achieved using Isabelle’s reflection mechanism, which cannot be easily recreated in
HOL Light. And this is an integration problem between two tools based on the same root logic!

Library Translations There are two ways to take on library integration. Firstly, one can try
to translate the contents of one formal system directly into another system; I will call his a library
bridge. This requires intimate knowledge of both systems and their respective foundations used, and
is necessarily somewhat ad-hoc. A small number of library bridges have been realized, typically in
special situations. [39] translates from HOL Light [19] to Coq [13] and [40] to Isabelle/HOL. Both
translations benefit from the well-developed HOL Light export and the simplicity of the HOL Light
foundation. [41] translates from Isabelle/HOL [18] to Isabelle/ZF [21]. Here import and export are
aided by the use of a logical framework to represent the logics. The Coq library has been imported
into Matita once, aided by the fact that both use very similar foundations. The OpenTheory format
[36] facilitates sharing between HOL-based systems but has not been used extensively.

The second way is to use a more general logical framework (see Section 2.3) which provides some way
to specify the respective foundations, and integrate the libraries under consideration directly into that
framework. Then the framework can serve as a uniform intermediate data structure, via which other
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systems can import the integrated libraries. This approach has been used in [42] for Mizar and in [43]
for HOL Light, using the logical framework LF [44] and making the libraries available to knowledge
management services. Another example is the Dedukti system [45], which imports, e.g., Coq and HOL
Light into a similar logical framework, namely LF extended with rewriting.

Again, the prevalence of the homogeneous method constitutes a major problem here. Even with
implicit heterogeneity, the fact that theories such as the real numbers are still modeled as conserva-
tive extensions of a fixed foundation using some intricate construction principle (cauchy sequences,
Dedekind cuts) means, that using different definitions can make it impossible to align a theory in one
library to the corresponding theory in a different library, even though from a mathematical point of
view they are “the same” (i.e. isomorphic). And even if the same abstract construction principle is
used in two libraries, their implementations in terms of the underlying foundation can be different
enough to make it difficult to identify the two resulting theories.

Very little work exists to address this problem. In [40], some support for library integration was
present: Defined identifiers could be mapped to arbitrary identifiers ignoring their definition. No
semantic analysis was needed because the translated proofs were rechecked by the importing system
anyway. This approach was revisited and improved in [46], which systematically aligned the concepts
of the basic HOL Light library with their Isabelle/HOL counterparts and proved the equivalence in
Isabelle/HOL. The approach was further improved in [47] by using machine learning to identify large
sets of further alignments.

The OpenTheory format [36] provides representational primitives that, while not explicitly using theo-
ries, effectively permit heterogeneous developments in HOL. The bottleneck here is manually refactor-
ing the existing homogeneous libraries to make use of heterogeneity.

A partial solution aimed at overcoming the integration problem was sketched in [48].

2.3 Logical Frameworks

Recently, formal systems have added an additional metal level through the introduction of logical
frameworks. These provide tools to specify logical systems themselves in a formal way. An overview
of the current state of art is given by [49].

An example for one such framework is LF [44], which is based on the dependently-typed λ-calculus
and uses the judgments-as-types paradigm. This means, that, when specifying some logic, one usually
introduces a new type constructor `, which maps a proposition ϕ of that logic to the corresponding
type of proofs of ϕ. An element of type ` ϕ is therefore a proof of ϕ and declaring such an element
corresponds to the judgement “ϕ holds”.

Logical frameworks introduce the possibility to additionally reason about logics, as e.g. in Twelf [50],
which is the currently most mature implementation of LF. Twelf has been used as a basis for the
LATIN library (see Section 2.4.2). Also, since in logical frameworks logics are themselves represented
as theories, they allow for defining logical systems heterogeneously, by building them up in a modular
way.

Dedukti [45] implements LF modulo rewriting. By supplying rewrite rules (whose confluence Dedukti
assumes) in addition to an LF theory, users can give more elegant logic encodings. Moreover, rewriting
can be used to integrate computation into the logical framework. A number of logic libraries have
been exported to Dedukti, which is envisioned as a universal proof checker. Isabelle [51] implements
intuitionistic higher-order logic, which (if seen as a pure type system with propositions-as-types) is
rather similar to LF. Despite being logic-independent, most of the proof support in Isabelle is optimized
for individual logics defined in Isabelle, most importantly Isabelle/HOL and Isabelle/ZF.

Unfortunately, logical frameworks are not an efficient alternative to the prevailing homogeneous formal
systems. State of the art proof assistents rely heavily on the specific peculiarities of their underlying
foundation to provide efficient proof search techniques, which would be impossible to implement at
the high level of generality that logical frameworks provide, at least without introducing cosiderable
overhead and thus reducing efficiency.

Another problem is that specific concepts used by some logic (noticably record types, subtyping prin-
ciples, inductive definitions, etc.) may be difficult to realize in a logical framework in such a way,
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that type checking can be done effectively, since the necessary information for doing so can not always
easily be lifted to the rather general level on which the type checker operates (see Section 4.2).

2.4 Projects at the KWARC research group

There has been a series of research projects at the KWARC research group that clearly “converges”
towards solving some of the problems described above, starting with Mmt/OMDoc and continuing
via LATIN to the OAF project. My research will be part of (and is funded by a DFG grant for) the
latter.

2.4.1 Mmt/OMDoc

OMDoc [52] is a representation language developed by Michael Kohlhase, that extends OpenMath
and MathML and allows for providing general definitions of the syntax of both mathematical objects
as well as mathematical documents. They make use of content dictionaries, which introduce primitive
notions and their semantics. In particular, it can represent the exports of deduction system libraries
and their documentation.

In the last five years, (chiefly) Florian Rabe re-developed the fragment of OMDoc pertaining to formal
knowledge resulting in the Mmt language [53, 54, 55]. Mmt greatly extends the expressivity, clarifies
the representational primitives, and formally defines the semantics of this OMDoc fragment. It is
designed to be foundation-independent and introduces several concepts to maximize modularity and to
abstract from and mediate between different foundations, to reuse concepts, tools, and formalizations.

More concretely, the Mmt language integrates successful representational paradigms

• the logics-as-theories representation from logical frameworks,
• theories and the reuse along theory morphisms from the heterogeneous method,
• the Curry-Howard correspondence from type theoretical foundations,
• URIs as globally unique logical identifiers from OpenMath,
• the standardized XML-based interchange syntax of OMDoc,

and makes them available in a single, coherent representational system for the first time. The combi-
nation of these features is based on a small set of carefully chosen, orthogonal primitives in order to
obtain a simple and extensible language design.

OMDoc/Mmt offers vey few primitives, which have turned out to be sufficient for most practical
settings. These are

1. constants with optional types and definitions,

2. types and definitions of constants are objects, which are syntax trees with binding, using previ-
ously defined constants as leaves,

3. theories, which are lists of constant declarations and

4. theory morphisms, that map declarations in a domain theory to expressions built up from decla-
rations in a target theory.

Using these primitives, logical frameworks, logics and theories within some logic are all uniformly repre-
sented as Mmt theories, rendering all of those equally accessible, reusable and extendable. Constants,
functions, symbols, theorems, axioms, proof rules etc. are all represented as constant declarations, and
all terms which are built up from those are represented as objects.

Theory morphisms represent truth-preserving maps between theories. Examples include theory inclu-
sions, translations/isomorphisms between (sub)theories and models/instantiations (by mapping axioms
to theorems that hold within a model), as well as a particular theory inclusion called meta-theory, that
relates a theory on some meta level to a theory on a higher level on which it depends. This includes
the relation between some low level theory (such as the theory of groups) to its underlying foundation
(such as first-order logic), and the latter’s relation to the logical framework used to define it (e.g. LF).
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Figure 1: A Theory Graph with Meta-Theories and Theory Morphisms in Mmt (from [6])

All of this naturally gives us the notion of a theory graph, which relates theories (represented as nodes)
via vertices representing theory morphisms (as in Figure 1), being right at the design core of the Mmt
language.

Given this modular approach of OMDoc/Mmt, heterogeneity is made explicit in the sense, that even
though foundations are present via meta-theories, only those aspects of the foundation that are used
in the definition of a theory T are present in the theory itself, making it easy to abstract from the
foundation and reuse the theory.

The OMDoc/Mmt language is used by the Mmt system [53], which provides a powerful API to
work with documents and libraries in the Mmt language, including a terminal to execute Mmt specific
commands, a web server to display information about Mmt libraries (such as their theory graphs) and
a plugin for the text editor jEdit, that can be used to create, type check and compile documents in
the Mmt language. The API is heavily customizable via plugins to e.g. add foundation specific type
checking rules and import and translate documents from different formal systems.

All of this puts Mmt on a new meta level, which can be seen as the next step in a progression
towards more abstract formalisms as indicated in the table below. In conventional mathematics
(first column), domain knowledge is expressed directly in ad hoc notation. Logic (second column)
provided a formal syntax and semantics for this notation. Logical frameworks (third column) provided
a formal meta-logic in which to define this syntax and semantics. Now Mmt (fourth column) adds
a meta-meta-level, at which we can design even the logical frameworks flexibly. (This meta-meta-
level gives rise to the name Mmt with the last letter representing both the underlying theory and
the practical tool.) That makes Mmt very robust against future language developments: We can,
e.g., develop LF +X without any change to the Mmt infrastructure and can easily migrate all results
obtained within LF.

Mathematics Logic Meta-Logic Foundation-
Independence

Mmt
logical framework logical framework

logic logic logic
domain knowledge domain knowledge domain knowledge domain knowledge

2.4.2 LATIN

The LATIN project [34] was a DFG funded project running from 2009 to 2012 under the principal
investigators Michael Kohlhase and Till Mossakowski. Its aim has been to build a heterogeneous, highly
integrated library of formalizations of logics and related languages as well as translations between them.
It uses Mmt as a framework, with LF as a meta-theory for the individual logics.

True to the general Mmt philosophy, all the integrated theories are built up in a modular way and
include propositional, first-order, sorted first-order, common, higher-order, modal, description, and
linear logics. Type theoretical features, which can be freely combined with logical features, include
the λ-cube, product and union types, as well as base types like booleans or natural numbers. In
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many cases alternative formalizations are given (and related to each other), e.g., Curry- and Church-
style typing, or Andrews and Prawitz-style higher-order logic. The logic morphisms include the
relativization translations from modal, description, and sorted first-order logic to unsorted first-order
logic, the negative translation from classical to intuitionistic logic, and the translation from first to
sorted first- and higher-order logic.

PL

ML FOL DFOL

FOL

CL

DL

HOL

OWL

MizarZFCIsabelle/HOL

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

Figure 2: A Fragment of the LATIN Atlas (from [6])

The left side of Figure 2 shows a fragment of the LATIN atlas, focusing on first-order logic (FOL)
being built on top of propositional logic (PL), its translation to HOL and ultimately resulting in the
foundations of Mizar, Isabelle/HOL and ZFC, as well as translations between them. The formalization
of propositional logic includes its syntax as well as its proof and model theory, as shown on the right
of Figure 2.

3 Research Objectives

My Ph.D. will be part of the OAF project [56], a DFG funded project running from 2015 to 2017
under the principal investigators Michael Kohlhase and Florian Rabe. The goal is to provide an Open
Archive of Formalizations: a universal archiving solution for formal libraries, corresponding library
management services (such as distributing, browsing and searching library contents) and methods for
integrating libraries in different formalisms in a unifying framework – namely OMDoc/Mmt, as in
Figure 3 – to allow for sharing and translating content across them. We further want it to be scalable
with respect to both the size of the knowledge base and the diversity of logical foundations.

Theoretically, the main prerequisite has been established in the LATIN project. However, whereas
LATIN provides a logical framework, there still remains the problem of integrating the existing formal
libraries. Consequently, there are two major objectives I want to participate in:

O1: Making existing libraries accessible to a unifying framework We want to be able to
make available theorem prover libraries accessible to the Mmt system. To do so, we will have to provide

LF LF+X

LATIN logic library . . .HOL Light

HOL Light library
Bool Arith

. . .

Mizar

Mizar library
XBoole XReal

. . .
Arith

. . .

Figure 3: Representing Libraries in Mmt (from [6])
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an Mmt meta theory for the foundational logic underlying the formal system under consideration and
write a plugin for the Mmt system, which handles the importing of the library and translating its
content into the OMDoc/Mmt format. As mentioned in Section 2.3, to handle peculiar concepts
provided by the theorem prover and allow for type checking those, this will entail extending LF, the
OMDoc/Mmt language and the Mmt system accordingly. As a result, implementing the necessary
plugins and theories for new formal systems should be as convenient as possible, to quickly build up
the set of libraries available in Mmt.

The HOLLight, Mizar and TPTP libraries have already been integrated this way; I will attempt to
do the same with PVS (see Section 4.4.1), which is more challenging, since its foundation contains
primitives which are not currently conveniently specifiable in the OMDoc/Mmt language.

O2: Refactoring and integrating libraries Once we have several libraries integrated into Mmt,
I want to look into methods to

1. refactor the available libraries in such a way, that the heterogeneous part of some theory can
be recognized as such and seperated from the foundational aspects of its library, and

2. align/integrate the libraries with each other, such that equivalent theories can be identified
and contents can be reused and transferred between libraries.

Naturally, both aspects are heavily interrelated, since integrating libraries is easier after some suitable
refactoring, and already aligned libraries can potentially be analyzed more easily and further refactored.

Even though there are several concepts that might be helpful in this objective, their effectiveness is
currently very much speculative and the results are difficult to foresee.

Given the very general and foundation-independent nature of the Mmt system, I think it is per-
fectly suitable to serve as a framework for both objectives; and fulfilling both could ideally lead to
OMDoc/Mmt becoming a functional basis for a general, modular and interlinked library of all formal
mathematics, unconstrained by foundational aspects or a specific theorem prover system.

4 Methodology

4.1 Preliminary Work Plan

My work will be roughly divided into the following three work areas; the first two being theoretical
research, the last one being case studies to evaluate the former two:

WA1

Extending LF (and Mmt) with
WP1.1 subtypes,
WP1.2 record types and
WP1.3 inductive types.

(See Section 4.2)

WA2

Investigating methods for
WP2.1 refactoring libraries and the theories contained therein, and
WP2.2 integrating formal libraries with each other.

(See Section 4.3)

WA3

Evaluating the above methods as to their usefulness and effectiveness by
WP3.1 making PVS accessible to Mmt; the imported PVS library will serve as a

case study for WA1 (See Section 4.4.1), and
WP3.2 Evaluating the methods from WA2, using the integrated libraries (PVS, TPS,

HOLLight, Mizar, TPTP) as a case study (See Section 4.4.2).
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4.2 WA1: Extending LF

As mentioned before, LF is based on the dependently typed λ-calculus. While this provides powerful
type constructors that allow for efficiently specifying particularly classic “textbook logics”, when it
comes to certain features which are used in “real-world” logics, such as the foundations of modern
proof assistants, our experience has shown that LF is not powerful enough to model these elegantly.

In practice, it turns out that for these kind of type constructors to be nicely specifiable in a logical
framework, the same feature has to already exist on the level of the logical framework itself. I therefore
want to try to extend LF by providing type constructors and checking rules for these kinds of features.
Implementing those in Mmt will furthermore necessitate extending its available data structures and
abstract syntax by additional term constructors, to accomodate i.e. record field assignments or pattern
matching on inductive types (which are basically constant declarations on the object level, which
OMDoc/Mmt currently doesn’t allow).

One such extension of LF (by finite sequences) and the associated problems in implementing them
conveniently (necessitating features such as ellipses, lengths, concatenations, foldings etc.) has been
described in [57].

It should be noted, that in extending LF by features such as predicate subtyping, we will necessarily lose
decidability. However, this will mostly just introduce certain proof obligations for typing judgements,
which have to be discharged by the user. Furthermore, since any formal library we want to import that
makes use of these features will have the same problem, the necessary typing judgements are ideally
already present in that library (to which extent will have to be seen). I therefore do not consider this
to be a serious obstacle to our goals.

4.2.1 WP1.1: Subtypes

Consider as an example a judgement such as A < B (“A is a subtype of B”) in some logic (such as the
type theory used by PVS). Since LF itself doesn’t support subtyping, the kind “type” in this case has
to be “pulled down” to a lower level, e.g. by declaring a new type tp, which serves as the (LF-)type
of all “lower-level types”, so we can declare both A and B to be of type tp, declare < to be of type
tp → tp → type and introduce a judgment AsubtpB : A < B (this is basically a relativization). But
now declaring an element a : A is impossible in LF, since A is not a type, but an element of type tp!
So we have to introduce a new type term and a new declaration $ of type term → tp → type, and
finally declare a : term and a type : a$A to provide the information, that a has the (lower-level) type
A.

However, LF now can not do proper type checking on the lower-level types, since now all typed objects
have the same LF-type term. Furthermore, if we wanted to declare a function of type f : B → C,
we would have to declare that as having LF-type term → term, losing the typing-information of f
and making it difficult to distinguish between a well-defined expression such as f(b) (where b has type
B) and f(q) for some term q on which f should be undefined. Furthermore, correctly type checking
a valid expression such as f(a) needs to make use of the information, that a is an element of type B,
even though it has been declared to be of type A (since A is a subtype of B).

One way of implementing this directly in LF is of course to always carry the lower-level typing judge-
ments as additional arguments in functions, i.e. f really has type Πb:term(b$B) → term and we
introduce an additional declaration f type : Πb:term,p:b$Bf(b, p)$C, but this gets messy very quickly
(obfuscating the actual mathematical content) and introduces a lot of overhead, since we “manually”
have to carry all the declared and inferred (through subtyping) low-level typing judgements everywhere
they might have to be used. Furthermore, we would have to take care of proof irrelevance, so that
f(b, p) = f(b, q) for every two proofs p, q : b$B.

Alternatively, one could introduce an injective type casting function AsubtpB : A → B for every
declaration A < B, allowing us to use LF-types directly. However, that would force us not just to
keep track of any such declaration and “manually” appending the corresponding function(s) whenever
we want to use an element of type A as an element of type B, but also to declare every property
some a : A might have again for all possible type casts such as AsubtpB(a), again introducing a lot of
overhead just to make sure that typecasted elements behave as needed.
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A potential solution to this problem might result from intersection types[58] or refinement types [59],
although it is questionable, whether they are powerful enough to allow for specifying e.g. predicate
subtyping efficiently. For a discussion of subtyping in higher-order logic, see e.g. [60].

4.2.2 WP1.2: Record Types

An element of a record type is in principle a list of key-value pairs. If we ignore the keys, a record
type is just a finite product, and the associated elements are tuples of corresponding values; however
in ignoring the keys, we lose exactly the thing that makes record types valuable.

Consider as an example the record type {|name:String, age:Int|}. Obviously, that can be modeled as
the type String × Int, however, in that case an element (“Steve”, 25) would also be an element of the
record type {|cityname:String, population:Int|}, which the intended semantics of record types should
not allow for. Furthermore, an element of the type A× B × C is not also an element of type A× B,
whereas the record type {|a:A, b:B, c:C|} should be a subtype of {|a:A, b:B|}, since an element of the
former instantiates all the required record fields of the latter, namely a and b.

Specifying record types wih the intended semantics in OMDoc/Mmt is however inconvenient,
since a definition of a record type like Person := {|name:String, age:Int|} introduces two new typed
symbols, name and age. These are functionally declarations, but on the object level, which the current
OMDoc/Mmt language does not allow for. The only current way to solve this is to model record
types as theories T and elements of a record type as Mmt structures, that import T while providing
the desired definitions for the symbols (i.e. record fields) specified in T . Unfortunately, this introduces
a lot of undesired overhead, not just in specifying the types, but also because we are not able to use
theories like types; i.e. a declaration like Steve:Person, having an anonymous element of type T within
a term or binding a variable of that type are now impossible.

4.2.3 WP1.3: Inductive Types

Similar problems arise with inductive types. In principle, type constructors such as W -types (see
e.g. [61]) can be used to specify inductive types. They are based on viewing inductive types as the
freely generated types over some signature, of which only the arities matter. For example, the natural
numbers are freely generated by two construction cases: 0 : N (with arity 0) and the successor function
S : N→ N (with arity 1). Using W -types, the type N could thus be defined as N := Wx:2(0, 1).

W -types are easy to specify and implement in any sufficient language; but as with record types, we
lose the information that the first element of the inductive definition is (supposed to be) called 0 and
the second is called S. We can define 0 and S using the W -type for N, but that results in definitions
like

S := λxN.sup(>, λyUnit.x)

and

plus := λnN.rec
(
λaBool.λuβ(a)→N.λgβ(a)→N.((λxUnit.n) + (λxUnit.sup(>, λyUnit.g(x))))(a)

)
,

which are difficult to read and even more difficult to write, contrary to the ease of definitions like

plus := λn.λx. x match [case 0 => n; case S(m) => S(n+m)].

However, that would necessitate having the two cases 0 and S being intrinsically linked to the definition
of the type N, which – as with record types – calls for having additional declarations (of 0 and S) on
the object level, namely in the definition of N.

4.2.4 A Potential Solution to the Problems With Record and Inductive Types

As we have seen, the problems with specifying both record types and inductive types can be solved,
if we are allowed to have declarations on the object level. One possible solution is therefore to extend
the OMDoc/Mmt language by a new term type (preliminarily called) OML which wraps around a
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declaration. To do so, the exact semantics of these terms will have to be worked out and the Mmt
system will have to be extended to allow for them.

4.2.5 Preliminary Results

So far, I have extended LF by coproducts, Σ-types, finite types (using coproducts, the empty type and
the Unit type) and W -types and specified the corresponding inference and computation rules in a new
Mmt plugin. I do not expect them to be useful for WP3.1–WP3.3, however doing so has increased
the depth of my understanding of the necessary Mmt API methods. Furthermore, they might provide
interesting toy examples for evaluating the resulting methods from WA2 (e.g. by translating inductive
types in some library to the corresponding W -types).

4.3 WA2: Refactoring and Integrating Libraries

As a second (and main) goal, I will look for useful refactoring methods of theories, such as theory in-
tersections (see Section 4.3.1), to increase modularity, expose heterogeneity and ultimately investigate
possible methods to efficiently identify overlap between and move knowledge across libraries.

The specific techniques to close in on that goal are very much an open question. Consequently, it is
difficult to predict, what kind of difficulties I might encounter in doing so, what kind of results can be
expected and what amount of work this will take.

Methods that might be useful in refactoring theories are theory intersections and methods for finding
(partial) theory morphisms (see Section 4.3.1). Apart from improving and extending those, I want to
look into the concept of interface theories and logics [38]: Assume, we are given e.g. a theory of
real numbers implemented in some logic using some construction principle. We know, that the real
numbers can be (up to cardinality and isomorphisms) uniquely described as the theory of topologically
complete ordered archimedian fields – ergo, to state the necessary axioms, second-order predicate
logic is sufficient. Moreover, any theory that uses the real numbers will (most likely) only use their
second-order properties. We would therefore benefit from finding a way to seperate the concrete
implementation of real numbers in our original logic from the “actual” theory of real numbers, which
we would call the interface theory of the reals (of which our starting theory is just an extension), and
the intricate construction principles used from the interface logic, that is actually used in asserting the
relevant axioms, namely second-order predicate logic.

Implementing methods to (if possible) automatically find and extract interface theories (and refactor
them to use the corresponding interface logic) could help identifying the heterogeneous part of a theory
and enable aligning libraries by matching equivalent theories in different libraries automatically. Due
to its modular nature, the LATIN library can provide the corrseponding interface logics.

Another potentially useful concept for translating content across libraries are declaration patterns [57],
that – if consistently used in the import method for some library – might make it easier to match equi-
valent theories using different foundations.

4.3.1 Preliminary Results

So far, I have developed the following two methods, that might be useful for refactoring and aligning
libraries:

Viewfinder The Viewfinder is an Mmt method that tries to find useful partial morphisms between
two theories. It has been tested on the LATIN library with experimental success, resulting in 20 –
3000 (depending on the configuration) morphisms on approximately 75000 pairs of theories. Since the
LATIN library is modular by design, the low number of found theory morphisms is not too suprising;
on inspection, most the found morphisms seem to be between theories that are similar-but-not-equal
by design, such as Curry-Howard morphisms or morphisms between Church-style and Curry-style type
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theories, where the corresponding theories deliberately do not share a common inclusion theory for
historical and semantic reasons. Its algorithm is similar to a method described in [62].

It takes as arguments two Mmt theories S, T , flattens them with respect to their theory inclusions
and computes a datatype for every constant c ∈ S ∪ T , consisting of two objects: An integer hash
of the term structure of the type A of c and a list of constants (considered as variables) occuring in
A. A check, whether two constants c and d are (superficially) compatible now reduces to an equality
check on the integer hashes of c and d. To match c to d, the Viewfinder only needs to iterate on the
respective lists of variables occuring in their types.

By choosing which constants are pulled into the integer hash of the term structure and which are
considered variables, the user has some degree of control over which constants should remain fixed and
which are allowed to be mapped to some other constant in the resulting morphisms.

Furthermore, by only trying to match those constants whose list of variables has some minimal length
(given as a parameter), the user can trade the number of morphisms found for a relative increase of
efficiency – the larger the minimal length, the smaller the number of morphisms and the faster the
algorithm. Also, a certain minimal length avoids “meaningless” morphisms, that do not preserve at
least some of the properties of a constant c (provided by respective axioms with some minimal number
of occuring constants containing c).

Theory Intersections By theory intersection we mean, given a partial theory morphism σ between
two theories S, T (as in Figure 4 on the left), extracting a common subtheory N , of which both S and
T can be thought of as extensions (as in Figure 4 on the right, where N is isomorphic to the theories
C,D, ρ1, ρ2 are Mmt structures and S′, T ′ are the refactored versions of S and T ). e.g. the theory
intersection between (Z,+, ·, <) and (Q,+, ·, <) along the obvious morphism would yield something
like the theory of linearly ordered integral domain rings.

S
D

T
C

σ

S′ T ′

N
ρ2ρ1

Figure 4: Theory Intersections

This allows for refactoring a given library in a modular way according to the little theories approach.

The theory intersection method takes as parameters two theories S, T , a name of the intersection theory
and a list of tuples consisting of some constant in S, some constant in T , a name for the corresponding
constant in the intersection and (optionally) a notation. The list of tuples can be computed from either
a single morphism S → T or a pair of compatible morphisms σ : S → T , δ : T → S, where σ and δ are
considered compatible if for all c ∈ S, d ∈ T we have δ(σ(c)) = c and σ(δ(d)) = d, whenever these are
well-defined.

Using the Viewfinder, the theory intersection method can in theory be automated and run over a
whole library without any user input, provided we accept generated names for the resulting theories
(the names for the constants in the intersection theory can be taken from one of the input theories).

I have integrated both the Viewfinder and the theory intersection method in the Mmt plugin for
jEdit as part of a new refactoring panel. An annotated video demonstration of the refactoring panel
and its components can be found online [63].

4.4 WA3: Evaluation

4.4.1 WP3.1: Making PVS Accessible to Mmt

My goal is to write an Mmt plugin to allow for importing PVS libraries into the Mmt system, using
the extended LF from WA1 as a logical framework. Doing so will entail three things:
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1. Writing an Mmt plugin that allows for importing .xml files generated by PVS into the Mmt
API (this has already been implemented, mostly by Florian Rabe with minor corrections by me)
and translating these into Mmt theories,

2. writing an Mmt theory that provides the underlying foundational logic of PVS and

3. extending and improving the Mmt language and -api, as well as LF, to provide syntactical
constructors for the specific peculiarities of PVS (see WA1).

PVS [64] is a specification language integrated with support tools and a theorem prover. It is
based on an extension of higher-order logic and is under active development at the Computer Science
Laboratory of SRI International in Menlo Park, California. There exists a large library of mathematical
theories for PVS, maintained by NASA’s Langley Formal Methods Team [32], providing a particular
incentive to integrate PVS into the OAF project. In addition, Sam Owre at SRI has provided us
with an XML exporter for PVS2, which makes reading library content into the Mmt API a lot more
convenient.

PVS has a very powerful (in general undecidable) type system and a rich language with many primi-
tives, to make formalizing theorems and proofs as easy as possibly. In contrast, Mmt is designed to
be as flexible as possible, and consequently has very few primitives to allow the user to define them
as needed. This will make the translation process from PVS to Mmt possibly difficult, at the very
least non-trivial. PVS offers e.g. record types, predicate subtyping, inductive and coinductive types,
parametric theories etc., all of which will have to be specified in (or translated using) the corresponding
Mmt theory. As such, PVS can serve as a suitable case study for the extended version of LF from
WA1.

The goal is to have the resulting import method run over the whole NASA library without errors
and type checking correctly; both internally to the Mmt API as well as after exporting its contents
(at least) into the Mmt language.

4.4.2 WP3.2: Evaluating the methods from WA2

WA2 is the most difficult part of my PhD; both with respect to the subject matter as well as in
evaluating the results. Since this is very much an open problem, it is difficult to foresee what is
feasible and what is not, as well as which specific challenges will occur.

Preliminarily, I will consider this part of my PhD a success, if we will be able to automatically identify
at least some of the basic domains of mathematical discourse (booleans, natural numbers, rationals,
reals,...) in two or more different library formats. The theory refactoring methods can furthermore be
evaluated on the basis of resulting size reductions of theories, increase of the number of theories (as
a measure of increased modularity) and inclusion relations and whether the input and output theory
graphs are equal after flattening (with respect to theory inclusions and Mmt structures).

The PVS NASA library as well as the Mizar, TPS and HOLLight libraries, which have already been
integrated into Mmt, will serve as a basis for this assessment.

4.5 Preliminary Schedule

The projected scheduling of these work areas (going forward) is visualized in Figure 5.

My initial focus will be on work area WA1 and the corresponding case study WP3.1. In the
process, I will furthermore (in collaboration with Florian Rabe) attempt to write a generic tutorial
on how to do the same for arbitrary formal systems. We hope that this will ultimately enable other
people outside of our research group to import libraries in e.g. their own theorem prover system into

2without proofs, which we deliberately do not include at this stage. Adding proofs to the goals presented in this
proposal would add further major difficulties.
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Figure 5: Preliminary Schedule

Mmt. This might increase the number of available libraries faster than if someone intimately familiar
with Mmt is needed. The current status of this tutorial can be found in the Mmt repository3.

5 Conclusion

I have layed out the details of the incompatibility problem with respect to formal libraries. It should
be clear, that – even though there are good reasons as to why the current automated theorem provers
are sympathetic to the homogeneous method, despite of its negative aspects – the current state of the
art is unsatisfactory if the ultimate goal is to have a unified, general archive of formal mathematics.

I believe that trying to take on the integration and incompatibility problem is consequently a worth-
while endeavour, and given the previous projects and results at the KWARC research group, as well
as the availabilty of several different formal libraries within Mmt, I think we are in a unique position
to achieve at least partial solutions to this problem.

It should be noted that I am only proposing to work on formal “results”, in the sense of theories
containing definitions, theorems, axioms, but deliberately not the corresponding proofs. Extending the
goals described in this proposal to proofs would introduce far greater challenges and vastly increase
the difficulties in getting actually useful results, but might be a very worthwile endeavor subsequent
to the work presented herein.
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