
Let’s compare the three main calculi used in the lecture – natural de-
duction, tableaux and resolution.

1 Natural Deduction

As the name suggests, natural deduction calculi are designed to mimic “nat-
ural” proofs, as done in informal mathematical settings. They consist of an
introduction rule and an elimination rule for every connective and quanti-
fier, that are relatively easy to come up with, if you know the semantics of a
connective. For example, if you know what the connective ∧ “means”, and
you need an introduction rule (that introduces a new ∧) and an elimination
rule (that gets rid of a ∧, it’s rather “natural” that the rules will have to
look like this:

Introduction:
A B

A ∧B

Elimination:
A ∧B

A

A ∧B

B

The disadvantage is that natural deduction calculi need some kind of
intuition/reasoning about what to do – in most cases, several rules can be
applied, and a choice has to be made which one to apply. Consequently,
they are relatively non-algorithmic.

We will prove
∃X.(P (X)⇒ ∀Y.P (Y ))

...where P ∈ Σp
1 – i.e. P is a unary predicate symbol:

1



We start with the lemma (¬∀Y.P (Y ))⇒ ∃Y.¬P (Y ):

(Assumption)1 ¬∀Y.P (Y )

(Assumption)2 ¬∃Y.¬P (Y )

(Assumption)3 ¬P (Y )

∃-Introduction ∃Y ¬P (Y )

⊥-Introduction ⊥
¬-introduction3 ¬¬P (Y )

¬-Elimination P (Y )

∀-Introduction ∀Y.P (Y )

⊥-Introduction ⊥
¬-introduction2 ¬¬∃Y.¬P (Y )

¬-Elimination ∃Y.¬P (Y )

⇒ -Introduction1 (¬∀Y.P (Y ))⇒ ∃Y.¬P (Y )

Now for the actual proof, using the above lemma:

(TND) (∀Y.P (Y )) ∨ (¬∀Y.P (Y ))

(Assumption)1 ∀Y.P (Y )

(Assumption)2 P (X)

⇒ -Introduction2 P (X)⇒ ∀Y.P (Y )

∃-Introduction ∃X.(P (X)⇒ ∀Y.P (Y ))

(Assumption)1 ¬∀Y.P (Y )

(Lemma) (¬∀Y.P (Y ))⇒ ∃Y.¬P (Y )

⇒ -Elimination ∃Y.¬P (Y )

∃-Elimination ¬P (c)

(Assumption)2 P (c)

⊥-Introduction ⊥
⊥-Elimination ∀Y.P (Y )

⇒ -Introduction2 P (c)⇒ ∀Y.P (Y )

∃-Introduction ∃X.(P (X)⇒ ∀Y.P (Y ))

∨ -Elimination1 ∃X.(P (X)⇒ ∀Y.P (Y ))

2 Tableaux

Tableaux proofs are always proofs by contradiction. They work by attempt-
ing to construct a countermodel of the formula. If that attempt succeeds,

2



we not only know that the formula is not a tautology, we also know why it
is not, by giving us an explicit model in which the formula is false. If the
attempt fails1, the formula has to be a tautology.

Every proposition in a tableaux calculus is labelled either true (·T ) or
false (·F ), starting with the formula we are interested in, labelled as false,
since we try to construct a model in which that formula is false.

Every rule in a tableaux calculus is guided by the question “what would
have to be the case, if the current formula were labelled correctly?” Consider
for example the rule for an implication labelled false (A ⇒ B)F : If this
implication were (provably) false, then A would have to be true and B would
have to be false, so we add AT and BF . This often leads to branching ; for
example, with the labelled formula (A∧B)F : If that formula should be false,
then either A has to be false or B has to be false (or both) – so we branch
into two sub-proofs with assumptions AF and BF , respectively.

We will prove the same formula as above:
We start with the assumption that our formula is false and attempt to

derive a contradiction from that:
(1) ∃X.(P (X)⇒ ∀Y.P (Y ))F

(2) P (VX)⇒ ∀Y.P (Y )F (from 1)

(3) P (VX)T (from 2)
(4) ∀Y.P (Y )F (from 2)

(5) P (cY )F (from 4)
(6) ⊥[cY /VX ]

We arrive at a contradiction, since we concluded that P (cY )F for some
constant cY , but we also concluded P (VX)T , where VX is a free variable,
which we are allows to substitute by any term. So substituting VX by cY
yields both P (cY )F and P (cY )T , contradiction.

3 Resolution

The resolution calculus is the most “computational” of the three, since it
basically proceeds purely algorithmically. As tableaux, it is fundamentally
guided by proofs by contradiction. The formula is first negated and de-
constructed into a collection of clauses, which are subsequently resolved,
yielding new clauses. A clause corresponds to a disjunction, all clauses are
assumed to be true simultaneously. A set of clauses therefore corresponds
to a conjunction of disjunctions – i.e. a formula in conjunctive normal form.

An empty clause corresponds to an empty disjunction, something that
can not be satisfied – i.e. a contradiction. If we manage to derive an empty
clause, we have proven that our assumption that the (negated) starting
formula is true leads to a contradiction.

1Fails in the sense of: all calculus rules have been exhausted such that there provably
is no way to construct a countermodel! All branches result in a contradiction.

3



Proof for

∀X∀Y ∀Z∃U∃V ∃W [(P (X,Y )⇒ (P (Z, a)⇒ R(a)))⇒ ((P (U, V )∧P (W,a))⇒ R(a))]

...where P ∈ Σp
2, R ∈ Σp

1, and a ∈ Σf
0 .

We first apply the CNF 1 calculus to derive a set of clauses:

∀X∀Y ∀Z∃U∃V ∃W [(P (X,Y )⇒ (P (Z, a)⇒ R(a)))⇒ ((P (U, V )∧P (W,a))⇒ R(a))]F

∃U∃V ∃W [(P (fX , fY )⇒ (P (fZ , a)⇒ R(a)))⇒ ((P (U, V )∧P (W,a))⇒ R(a))]F

[(P (fX , fY )⇒ (P (fZ , a)⇒ R(a)))⇒ ((P (vU , vV ) ∧ P (vW , a))⇒ R(a))]F

{P (fX , fY )⇒ (P (fZ , a)⇒ R(a))T }; {(P (vU , vV ) ∧ P (vW , a))⇒ R(a)F }

{P (fX , fY )F , P (fZ , a)⇒ R(a)T }; {P (vU , vV ) ∧ P (vW , a)T }; {R(a)F }

{P (fX , fY )F , P (fZ , a)F , R(a)T }; {P (vU , vV )T }; {P (vW , a)T }; {R(a)F }

And now for the actual resolution (we only actually need the first two
clauses):

∅

{R(a)T }

{P (fZ , a)F , R(a)T }

{P (fX , fY )F , P (fZ , a)F , R(a)T } {P (vU , vV )T
[
fX
vU

, fYvV

]
}

{P (vW , a)T
[
fZ
vW

]
}

{R(a)F }

4


