0 Introduction

Consider the structure $\mathbb{R} = (\mathbb{R}, <, +, -, \cdot, 1)$

Remark 0.1. the relation “<” is definable in the structure $(\mathbb{R}, +, 0, -, \cdot, 1)$, because $x < y$ is equivalent to $\exists z (\neg z \not= 0 \land x + z \cdot z \not= y)$

$\text{Th}(\mathbb{R}) = \text{RCF}$ is complete and has quantifier elimination.

$\mathfrak{M} = (M, R_1, R_2, \ldots, \text{Def}(\mathfrak{M})$ is the smallest collection D of subsets of the cartesian product of M, M^2, \ldots s.t. $R_i \in D$ and D is closed under finite unions, finite intersections, taking complements, projections and cartesian products

Definition 0.1. An ordered structure $\mathfrak{M} = (M, <, \ldots) \text{ is o-minimal, if every}$

definable subset $X \subseteq M^1 \text{ is a finite union of singletons and open intervals of the form } (a, b) \text{ with } a, b \in M \cup \{-\infty, \infty\}$

Generally we consider only ordered structures where the order is dense and has no endpoints

Proposition 0.1. \mathbb{R} is o-minimal

Proof. By QE, if $X \subseteq \mathbb{R}^1$ is definable, then $X = \varphi(\mathbb{R})$ for some quantifier-free formula $\varphi(x_0)$

Example 0.1.

- $\mathbb{R}_{\text{exp}} = (\mathbb{R}, e^x)$ is o-minimal
- $(\mathbb{R}, <)$ is o-minimal
- $(M, <) \not= \text{DLO}$ is o-minimal
- $(\mathbb{Q}, <, +, -, 0, 1)$ is not o-minimal (Take the set $X = \{x \in \mathbb{Q} | \exists y y^2 = x\}$)

0.1 The Rila-Wilke Theorem

Definition 0.2. A point in \mathbb{R}^n all of whose coordinates are rational is called rational point

Remark 0.2.

- Algebraic curves:
 - $y = f(x)$ with $f \in \mathbb{Q}(X)$ has many rational points
 - $x^n + y^n = 1$ for $n = 2$ many rational points, for $n > 2$ very few (finite)
• Non-algebraic curves:
 - \(y = e^x \) has only one rational point \((0, 1)\)
 - \(y = 2^x \) has infinitely many rational points: all \((m, 2^n)\) with \(m \in \mathbb{Z}\)

Definition 0.3 (Height of rational numbers).
For \(x \in \mathbb{Q} \), let \(x = \frac{a}{b} \) with \(a, b \in \mathbb{Z}, (a, b) = 1 \). Define \(h(x) = \max \{|a|, |b|\} \)
For \(x \in \mathbb{Q}^n \), \(x = (x_1, \ldots, x_n) \) let \(h(x) := \max_{i \in \{1, \ldots, n\}} h(x_i) \)

Remark 0.3. Let \(r \in \mathbb{Z}_{>0} \), then \(\{x \in \mathbb{Q} \, | \, h(x) \leq r\} \) is finite and has cardinality \(\leq 2r^2 + 1 \)

Definition 0.4. Given \(X \subset \mathbb{R}^n \), let \(N(X, r) = |\{x \in X \, | \, x \in \mathbb{Q}^n \text{ and } h(x) \leq r\}| \)

Example 0.2.
- If \(X = \mathbb{R} \subset \mathbb{R}^1 \), \(N(X, r) \sim r^2 \). The same holds whenever \(X \) is the graph of a rational function
- If \(X : y = 2^x \), \(N(X, r) \sim \log_2 N(\mathbb{R}, r) \)

Fact The probability of two randomly chosen positive integers being relatively prime is \(\frac{6}{\pi^2} \)

\[\lim_{r \to \infty} \frac{N(\mathbb{R}, r)}{r^2} = \frac{\pi^2}{6} \]

Exercise 0.1. \(N(\mathbb{R}, r) = ? \)

Higher dimensions: \(X = \{(x, y, z) \in \mathbb{R}^3 \, | \, x^y = z\} \) is non-algebraic, but contains for each \(y \in \mathbb{Q} \) the algebraic set \(\{(x, y, z) \, | \, x^y = z\} = X_y \)

Definition 0.5. For \(X \subset \mathbb{R}^n \), let \(X^{alg} \), the algebraic part of \(X \), be the union of all connected, infinite semialgebraic sets contained in \(X \) and let \(X^{tr} \), the transcendental part of \(X \), be \(X \setminus X^{alg} \)

Theorem 0.1 (Pila-Wilkie). Suppose \(X \subset \mathbb{R}^n \) is definable in o-min structure \((\mathbb{R}, <, \ldots)\), then for every \(\epsilon > 0 \) there is a constant \(c \in \mathbb{R} \) such that \(N(X^{tr}, r) \leq cr^\epsilon \) (subpolynomial)

Conjecture (Wilkie). Suppose \(X \subset \mathbb{R}^n \) is definable in \(\mathbb{R}_{\exp} \), then there exist constants \(c_1, c_2 \) s.t. \(N(X^{tr}, r) \leq c_1 (\ln r)^{c_2} \)

0.2 The (Pila-Zannier proof of the) Manin Mumford Conjecture

Theorem 0.2 (Manin-Mumford Conjecture for \((\mathbb{C}^*, \cdot)\)). Suppose \(V \subset (\mathbb{C}^*)^n \) is an algebraic subvariety (For us, an algebraic variety is a subset of some \(\mathbb{C}^n \) defined by a (finite) system of polynomial equations). Then there exist \(b_1, \ldots, b_n \in \mathbb{C} \)
\(\mu^n \) and algebraic subgroups (This means in practice, each \(B_i \) is defined by a system of equations of the form \(x_1^{m_1} \cdot \ldots \cdot x_n^{m_n} = 1, m \in \mathbb{Z} \)) \(B_1, \ldots, B_m \) of \(\mathbb{C}^n \) s.t.

\[
V \cap \mu^n = \bigcup_{i=1}^{m} b_i(B_i \cap \mu^n)
\]

where \(\mu \) denotes the set of roots of unity

\[
\mathbb{R} \rightarrow S^1 \quad t \mapsto e^{\pi it} \\
\mathbb{C} \rightarrow \mathbb{C}^\times \\
z \mapsto e^{iz}
\]

(\(\mathbb{R}, <, \ldots, \exp \)), then \(\{ z \mid \exp(z) = 1 \} = \{ (0, 2\pi k) \mid k \in \mathbb{Z} \} \subset \mathbb{R}^2 \) (not o-minimal)

1 O-minimal structures

(following: Speissegger - “O-minimal structures”, Peterzil - “A selfguide to o-minimality”,
van den Dries - “Tame topology and o-minimal structures”)

Definition 1.1. \(\mathfrak{M} = (M, <) \) is an ordered structure if \(< \) is a dense linear order without end points on \(M \)

From now on, \(\mathfrak{M} \) is always an ordered structure. This yields the order topology on \(\mathfrak{M} \). The topology with basic open sets \((a, b) \) with \(a, b \in M \cup \{-\infty, \infty\} \) \(M^n \): the topology with basic open sets \(I = I_1 \times \ldots \times I_n \) where each \(I_i \) is an open interval (\(I \) is an open box).

Remark 1.1. If \(M = \mathbb{R} \), then these are the usual topologies on \(\mathbb{R}, \mathbb{R}^2 \ldots \)

Definition 1.2. A subset \(S \subset M^n \) is definably connected if there are no definable open sets \(U, V \subset M^n \) such that

- \(S = (S \cap U) \cup (S \cap V) \)
- \((S \cap U) \cap (S \cap V) = \emptyset \)
- \(S \cap U \) and \(S \cap V \) are non-empty

Remark 1.2. If \(S \) is connected, then it is definably connected

Exercise 1.1. (1) The image of a definably connected definable set under a definable continuous map is definably connected

(2) Let \(S, T \subset M^n \) be definably connected definable sets with \(\text{cl} S \cap T \neq \emptyset \), then \(S \cup T \) is definably connected

Definition 1.3. \(\mathfrak{M} \) is definably complete if every definable subset of \(M \) has an infimum and a supremum in \(M \cup \{-\infty, \infty\} \)

Exercise 1.2. Assume \(\mathfrak{M} \) is definably complete

(1) Every interval is definably connected
(2) (Intermediate Value Theorem) Let $f, g : I \to M$ be definable and continuous, with $I \subset M$ an interval. Assume $f(x) \neq g(x), \forall x \in I$

Then: Either $f(x) > g(x), \forall x \in I$ or $f(x) < g(x), \forall x \in I$

Definition 1.4. \mathcal{M} is *o-minimal* if every definable subset of M is a finite union of points and intervals

Remark 1.3. If \mathcal{M} is o-minimal, then it is definably complete

Assume \mathcal{M} is o-minimal for the rest of the section

Exercise 1.3. (1) Every infinite definable subset of M contains an interval

(2) If $A \subset M^{n+1}$ is definable, then \{ $x \in M^n | A_x$ is finite \} is definable ($A_x := \{ a \in M | (a, x) \in A \}$

Lemma 1.1. Let $S \subset M$ be definable and $a \in M$, then there exists $\varepsilon > a$ in M such that $(a, \varepsilon) \subset S$ or $(a, \varepsilon) \subset M \setminus S$.

$\mathcal{M} \equiv \mathcal{M}$, \mathcal{M} o-minimal $\Rightarrow \mathcal{M}$ o-minimal

Definition 1.5. Let \mathcal{M} be a structure. \mathcal{M} is minimal if every definable subset of M is finite or has finite complement.

Exercise 1.4. \mathcal{M} ordered structure, o-minimal. Then the following are equivalent:

(1) Every $\mathcal{M} \equiv \mathcal{M}$ is o-minimal.

(2) For every definable family \{ $X_a | a \in M^k$ \} of finite subsets of M, there is $k \in \mathbb{N}$ such that X_a is the union of $\leq k$ points

(3) For every definable family \{ $X_a | a \in M^k$ \} of subsets of M there is $k \in \mathbb{N}$ such that X_a is the union of $\leq k$ points and intervals

1.1 **Monotonicity**

\mathcal{M} o-minimal, $f : I \to M$ a definable function with $I = (a, b)$

Definition 1.6. f is *strictly monotone* if f is constant, strictly increasing or strictly decreasing.

For $c \in I$, f is constant/strictly increasing/strictly decreasing/strictly monotone at c if there exist $c_1 < c < c_2$ such that $f |_{(c_1, c_2)}$ is constant/strictly increasing/strictly decreasing/strictly monotone.

Exercise 1.5. 1. If f is strictly monotone at every $c \in I$, then f is strictly monotone

2. Assume f is strictly monotone, then there is an open interval $J \supset I$ such that $f |_J$ is continuous.

Lemma 1.2. Assume $f(x) > x$ for all $x \in I$, then there exists an open interval $J \supset I$ and $c > J$ such that $f(x) > c$ for all $x \in J$
Proposition 1.1. Let \(S \subset I^2 \) be definable. There exists an open interval \(J \subset I \) such that
\[
\Delta^*(J) := \{(x, y) \in J^2 \mid y > x \}
\]
is either a subset of \(S \) or of \(I^2 \setminus S \).

Remark 1.4. Finite Ramsey: For every \(n \), there is \(N \) such that every 2-coloring of \([N]^2 \) has a monochromatic set of size \(n \).

Corollary 1.1. Let \(S_1, \ldots, S_k \subset M^2 \) be definable. Assume \(I^2 \subset \bigcup_{i=1}^k S_i \); then there exists \(i \in \{1, \ldots, k\} \) and an open interval \(J \subset I \) such that \(\Delta^*(J) \subset S_i \).

Corollary 1.2. \(f : I \to M \) definable, then there exists \(J \subset I \) such that \(f \mid J \) is strictly monotone.

Theorem 1.1. Monotonicity theorem (\(\mathfrak{M} \)-minimal, \(I = (a,b) \) interval, \(f : I \to M \) definable)
There exist \(k \in \mathbb{N} \) and \(a_1, \ldots, a_k \in I \) such that \(a_0 := a < a_1 < \ldots < a_k < a_{k+1} := b \) and for every \(i \in \{0, \ldots, k\} \), \(f \mid (a_i, a_{i+1}) \) is strictly monotone and continuous.

Proof. Let \(B = \{x \in I \mid f \text{ is strictly monotone and continuous at } x\} \subset I \) (definable).
Claim: \(I \setminus B \) is finite. Thus let \(a_1, \ldots, a_k \) be an enumeration of \(I \setminus B \) and let \(a_0 := a, a_{k+1} := b \). For each \(i \in \{0, \ldots, k\} \), \(f \) is strictly monotone and continuous at every \(x \in (a_i, a_{i+1}) \).
\[\Rightarrow f \mid (a_i, a_{i+1}) \text{ is strictly monotone and continuous.} \]
Proof of claim: Suppose not, then by \(\mathfrak{M} \)-minimality, \(I \setminus B \) contains an open interval \(J \). By the corollary there is \(J' \subset J \) such that \(f \) is strictly monotone on \(J' \). By Exercise, there is an interval \(J'' \subset J' \) such that \(f \) is continuous in \(J'' \), but then \(J' \subset I \setminus B \subset B' \).

Corollary 1.3. \(f : I = (a,b) \to M \) definable

(i) The limits \(\lim_{x \to a^+} f(x) \), \(\lim_{x \to b^-} f(x) \) and, for every \(c \in (a,b) \), the limits \(\lim_{x \to c^-} f(x) \) and \(\lim_{x \to c^+} f(x) \) exist in \(M \cup \{-\infty, \infty\} \).

(ii) If \(a, b \in M, g : [a,b] \to M \) definable and continuous, then \(g \) has maximum and minimum in \([a,b] \).

1.2 Definable Compactness

Siehe Bachelorarbeit S.18

Definition 1.7. A definable set \(S \subset M^n \) is definably compact if for every interval \((a,b) \) in \(M \) and every continuous definable function \(\gamma : (a,b) \to S \subset M^n \), the limits \(\lim_{x \to a^+} \gamma(x) \) and \(\lim_{x \to b^-} \gamma(x) \) belong to \(S \).

Remark 1.5. If \(S \) is compact, then \(S \) is definably compact (?).

Lemma 1.3. If \(S \subset M^n \) is definably compact, then \(\pi_{n-1}(S) \) (projection onto the last \(n-1 \) coordinates) is definably compact.
Proof. Let \((a, b)\) be an interval in \(M\) and \(\gamma : (a, b) \to \pi_{n-1}(S) \subseteq M^{n-1}\) definable. Note: for all \(x \in \pi_{n-1}(S)\), \(S_x := \{y \in M : (x, y) \in S\}\) is a definable subset of \(M\).

Note that by the definable compactness of \(S\), if \((c, d) \subseteq S_x\), then \(c, d \in S_x\), this means that \(S_x\) is closed and bounded. Thus, for every \(x \in \pi_{n-1}(S)\), \((x, \inf S_x) \in S\) Define: \(\gamma' : (a, b) \to S, z \mapsto (\gamma(z), \inf S_z)\). By definable compactness \(\lim_{z \to a^-} \gamma'(z)\) and \(\lim_{z \to b} \gamma'(z)\) are in \(S\). Hence \(\lim_{z \to a^-} \gamma(z)\) and \(\lim_{z \to b} \gamma(z)\) are in \(\pi_{n-1}(S)\)

Theorem 1.2. Let \(S\) be a definable subset of \(M^n\). \(S\) is definably compact iff \(S\) is closed and bounded.

Proof. “\(\Rightarrow\)” by monotonicity theorem

“\(\Leftarrow\)” Assume \(S\) is definably compact.

- **\(S\) is bounded:** \(S\) is bounded iff the image of \(S\) under every projection onto a single coordinate is bounded. Therefore by Lemma 1.3 we can assume \(n = 1\), which is easy.

- **\(S\) is closed:** By induction on \(n\).

 \(n = 1:\) easy.

 \(n \geq 2:\) Suppose that \((x, y) \in \overline{S} \setminus S\), where \(x \in M^{n-1}, y \in M\).

 * \(S_x := \{z \in M : (x, z) \in S\}\) is closed

 * \(S_x = \overline{S_x}\)

 There is a closed interval \(I\) with \(y \in \text{int}I\) and \(I \cap S_x = \emptyset\). Let \(D \subseteq M^{n-1}\) be a closed box with \(x \in \text{int}D\). Let \(S_1 := S \cup (D \times I)\)

 * \((x, y) \in S_1\)

 * \(x \in \pi_{n-1}(S_1) \setminus \pi_{n-1}(S_1)\), since:

 \[
 (\{x\} \times I) \cap S = \{x\} \times (I \cap S_x) = \emptyset
 \]

 * (IH) \(\pi_{n-1}(S_1)\) is not definably compact

 * \(S_1\) is not definably compact \(\Rightarrow\) \(S\) is not definably compact

\(\square\)

1.3 Cells and cell decomposition

(B.A. Seite 21)

Definition 1.8 (Cells). Let \(\sigma \in \{0, 1\}^n\), let \(\sigma' = \sigma |_{n-1}\). A definable subset \(C \subseteq M^n\) is a \(\sigma\)-cell, if one of the following holds:

(i) \(n = 1, \sigma(0) = 0, C = \{a\}\) for some \(a \in M\)

(ii) \(n = 1, \sigma(0) = 1, C\) is a (non-empty) open interval

(iii) \(n > 1, \sigma(n-1) = 0, C' = \pi_{n-1}\) is a \(\sigma'\)-cell and \(C\) is the graph of a definable function from \(C'\) to \(M\)

(iv) \(n > 1, \sigma(n-1) = 1, C'\) is a \(\sigma'\)-cell and \(C = (f, g)_{C'} := \{(x, y) : x \in C', f(x) < y < g(x)\}\) for some definable \(f, g : C' \to M\)
Lemma 1.4. If $C \subset M^n$ is a cell and $m \leq n$, then $\pi_m(C)$ and for any $a \in \pi_m(C)$ the $C_a = \{y \in M^{n-m} \mid (a, y) \in C\}$ are cells.

Proof. That $\pi_m(C)$ is a cell holds by definition. $\pi^n_m = \pi^{n+1}_m \circ \ldots \circ \pi^n_{m-1} \circ \pi^n_{m-1}, C = (f_{n-1}, g_{n-1}) \pi^n_{m-1}(C), \pi^n_{m+1}(C) = (f_{m+1}, g_{m+1}) \pi^n_{m-1}(C)$

C_a is the cell obtained as follows:

- $C_0 = (f_m(a), g_m(a))$
- $C_1 = (f_{m+1}(a, x), g_{m+1}(a, x))C_0 \subset M^2$
- \vdots
- $C_{n-m-1} = (f_{n-1}(a, x), g_{n-1}(a, x))C_{n-m-2} \subset M^{n-m}$

$1 \leq m \leq n$ let π^n_m be the projection onto the first m coordinates. If $\varepsilon : \{1, \ldots, m\} \rightarrow \{1, \ldots, n\}$ is strictly increasing $\pi_i : M^n \rightarrow M^n, (x_1, \ldots, x_n) \rightarrow (x_{\varepsilon(1)}, \ldots, x_{\varepsilon(n)})$

Definition 1.9. Let $C \subset M^n$ be a σ-cell

1. C is open if $\sigma(i) = 1, \forall i \in n$
2. $\sum \sigma = \sum_{i=0}^{n-1} \sigma(i)$
3. Let $\tau : \{1, \ldots, \sum \sigma\} \rightarrow \{1, \ldots, n\}$ be strictly increasing enumeration of the elements $i \in \{1, \ldots, n\}$ such that $\sigma(i-1) = 1$

Lemma 1.5. A cell C is an open cell iff it is an open set

Lemma 1.6. Let $C \subset M^n$ be a cell. Then $C_\sigma = \Pi_{i\in\sigma}(C) \subset M^{\sum \sigma}$ is an open cell and $\pi_{i\sigma}|C : C \rightarrow C^n$ is a definable homeomorphism

Proposition 1.2. Every cell in M^n is definably connected

Definition 1.10. (1) Let C be a finite collection of cells in M^n and $U \subset M^n$. C is a cell decomposition of U if C is a partition of U and, if $n \geq 2$, the set $\Pi_{n-1}(C) := \{\Pi_{n-1}(C) \mid C \in C\}$ is a cell decomposition of $\Pi_{n-1}(U)$

(2) If $Z \subset U$, then U is compatible with Z if for every cell $C \in C$ either $C \subset Z$ or $C \cap Z = \emptyset$

(3) If C and D are cell decompositions of U, we say that D is a refinement of C, if D is compatible with every $C \in C$

Example 1.1. Consider the set $S = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ (13 cells for all of \mathbb{R}^2)

Remark 1.6. Let C be a cell decomposition of $U \subset M^{n+m}$ and let $x \in M^n$. Then $C_x = \{C_x \mid C \in C\}$ is a cell decomposition of $U_x = \{y \in M^m \mid (x, y) \in U\}$

Proof. by induction on m
Let $Z_1, \ldots, Z_k \subset M^n$ and let \mathcal{B} be the boolean algebra generated by them. Then: a cell decomposition of M^n is compatible with the Z_i iff it is compatible with all atoms of \mathcal{B}

Proof. Every atom B of \mathcal{B} has the form $B = B_1 \cap \ldots \cap B_k$, where each B_i is either Z_i or $M^n \setminus Z_i$.

\Leftarrow If C is compatible with the Z_i, for each atom B of \mathcal{B}

- if C contains every B_i, then C is contained in B
- if C is disjoint for some B_i, then C is disjoint from B

\Rightarrow If C is compatible with the Z_i, for each atom B of \mathcal{B}

- if $C \cap B_i$ is open, then $C \cap B_i$ is open
- if $C \cap B_i$ is closed, then $C \cap B_i$ is closed

Theorem 1.3 (Cell Decomposition Theorem). (Siehe "Zellzerlegung O-minimalen Strukturen")

(I)_n Let $S_1, \ldots, S_k \subset M^n$ be definable. Then there is a cell decomposition of M^n that is compatible with every S_i

(II)_n Let $f : S \to M$ be definable with $S \subset M^n$ definable. Then there is a cell decomposition \mathcal{C} of M^n compatible with S such that for every $C \in \mathcal{C}$, $f \restr C$ is continuous.

Proof. By induction

$n = 1$ \mathcal{I}_n follows easily from the definition of o-minimality, \mathcal{II}_n is the monotonicity theorem.

$n > 1$

Lemma 1.7. Let $S \subset M^n$ be definable. The following are equivalent

1. S is sparse if (Definition) $\text{int}(S) = \emptyset$ (Remark: A cell is sparse iff it is not open)
2. The set $S' := \{ x \in M^{n-1} \mid S_x \text{ is infinite} \}$ is sparse
3. S is nowhere dense, if (Definition) $\text{int}(S) = \emptyset$

In particular, a finite union of sparse subsets of M^n is sparse.

Proof $\Rightarrow 2$ Assume S' is not sparse. Then we can find an open box $U \subset S'$. For any $x \in U$, since $S_x \subset M$ is infinite, S_x contains an interval.

Fix a decomposition of S_x as a union of finitely many open intervals and points. Let $I_x := \text{the first open interval in the decomposition}$.

\[i_x := \begin{cases} \inf I_x & \text{if } \inf I_x \in M \\ \text{a point in } I_x & \text{otherwise} \end{cases} \]

\[S_x := \begin{cases} \sup I_x & \text{if } \sup I_x \in M \\ \text{a point in } I_x \text{ greater than } i_x & \text{otherwise} \end{cases} \]

i_x and S_x are definable functions on U. By \mathcal{II}_{n-1}, there is a cell decomposition \mathcal{C} of M^{n-1} with U such that $i_x \restr C$ and $S_x \restr C$ are continuous for any $C \in \mathcal{C}$. Then there is an open cell $C' \in \mathcal{C}$ contained in U (whence $(i_x \restr C', S_x \restr C') \restr C'$ is an open cell and is contained in S)
1.4 The Pila-Wilkie Theorem

Theorem 1.4. Let $\mathcal{R} = (\mathbb{R}, <, +, -, 0, 1, ...)$ be an o-minimal expansion of the real field. Let $X \subset \mathbb{R}^n$ be definable in \mathcal{R}. Then for every $\varepsilon > 0$, there is $c = c(X, \varepsilon) > 0$ such that $\forall T \geq 1 \ N(X^{tr}, T) \leq cT^\varepsilon$, where

- $X^{tr} = X \setminus X^{alg}$, $X^{alg} = \bigcup \{Y \mid Y \subset X \text{ is infinite, connected, semialgebraic}\}$
- For $X \subset \mathbb{R}^n$, $N(X, T) = |X(\mathbb{Q}, T)| := \{|x \in X \mid x \in \mathbb{Q}^n \wedge H(x) \leq T\}$

For $q \in \mathbb{Q}^n$, $H(q) = \max(q_j)$, for $q \in \mathbb{Q}^n$, $H(q) := \max(|a|, |b|)$, if $q = \frac{a}{b}$, $\gcd(a, b) = 1$, $H(0) = 0$.

Theorem 1.5 (Uniform Pila-Wilkie). Let \mathcal{R} be an o-minimal expansion of $(\mathbb{R}, <, +, -, 0, 1)$. Let $(X_b)_b$ be a definable family of subsets of \mathbb{R}^n. For every $\varepsilon > 0$, there exists a family $(Y_b)_b$ and $c = c((X_b)_b, \varepsilon)$ such that for every $b \in B$

- $Y_b \subset X^{alg}_b$
- $\forall T \geq 1, N(X_b \setminus Y_b, T) \leq cT^\varepsilon$

Definition 1.11. A hypersurface of degree d in \mathbb{R}^n is a set of the form $\{x \in \mathbb{R}^n \mid f(x) = 0\}$ where $f \in \mathbb{R}[X]$ has degree d.

Definition 1.12. Let $X \subset \mathbb{R}^n, k \in \mathbb{Z}_+$. A partial k-parametrisation of X is a function $f : (0, 1)^{\dim X} \to X$ such that $\forall \alpha \in \mathbb{N}^{\dim X}$ with $|\alpha| \leq k$ ($|\alpha| = \sum \alpha_i$):

- $f^{(\alpha)}$ is continuous
- $|f^{(\alpha)}|_{\max|y|} \leq 1, \forall x \in (0, 1)$

Definition 1.13. A k-parametrisation of X is a finite set S of partial parametrisations of X such that $\bigcup_{f \in S} \operatorname{im}(f) = X$
Theorem 1.6 (Bombieri-Pila). Given $0 < m < n, d > 0$, there exist $k = k(m, n, d) \in \mathbb{Z}_+$, $c = c(m, n, d) > 0$ such that if $f : (0, 1)^m \to X$ is a k-parametrisation of its image, then $X(\mathbb{Q}, T) \cup$ union of $\leq cT^\varepsilon$ hypersurfaces of degree d. Moreover, $\varepsilon \to 0$ as $d \to \infty$.

Let \mathcal{M} be an o-minimal expansion of a real closed field M.

Definition 1.14.
- An element $a \in M$ is strongly bounded if there is $N \in \mathbb{N}$ such that $|a| \leq N$.
- $a \in M^n$ is strongly bounded if there is $N \in \mathbb{N}$ such that $|a| := \max |a_i| \leq N$.
- A subset A of M^n is strongly bounded if there is $N \in \mathbb{N}$ such that $|a| \leq N \forall a \in A$.

Theorem 1.7 (Parametrisation Theorem). Let X be a strongly bounded definable subset of M^n, for every $k \in \mathbb{Z}_+$, there exists a definable k-parametrisation of X.

Corollary 1.4. Let $m, r \geq 1, X \subset (0, 1)^m$ definable. Then there exists a finite set S of functions $(0, 1)^{dimX} \to \mathbb{R}^d$ of class C^r such that $\bigcup_{\phi \in S} \text{im}(\phi) = X$ and $\|\phi_i(x)\| \leq 1$ for all $\phi \in S, \alpha \in \mathbb{N}^{dimX}$ with $|\alpha| \leq r$ and $x \in (0, 1)^{dimX}$.

Definition 1.15. A partial r-parametrisation of X is a C^r-function $f : (0, 1)^{dimX} \to X$ such that $\forall \alpha \in \mathbb{N}^{dimX}$ with $|\alpha| \leq r, \forall x |f^{(\alpha)}(x)| \leq N$ for some $N \in \mathbb{N}$.

Proof of corollary. Let S be an r-parametrisation of X. Cover $(0, 1)^{dimX}$ with N^{dimX} cubes of side $\frac{1}{k}$ and for each cube K, let $\lambda_K : (0, 1)^{dimX} \to K$ be the obvious bijection. Let $S := \{\phi \circ \lambda_K | \phi \in S^K, K$ is one of the cubes}, $d := dimX$.

$$\mathbb{R}^d \xrightarrow{\lambda} \mathbb{R}^d \xrightarrow{\phi} \mathbb{R}^n.$$

$$\frac{\partial(\phi \circ \lambda)}{\partial x_i}(x) = \frac{\partial \phi}{\partial \lambda}(\lambda(x)) \cdot \frac{\partial \lambda}{\partial x_i}(x) = \frac{1}{N} \frac{\partial \phi}{\partial x_i}(\lambda(x))$$

$$\frac{\partial(\phi \circ \lambda)}{\partial^{x_1 \ldots x_d}}(x) = \left(\frac{1}{N} \right)^{|\alpha|} \frac{\partial \phi}{\partial^{x_1 \ldots x_d}} \leq \frac{1}{N} \cdot N.$$

Corollary 1.5 (Uniform parametrisation Theorem). Let $n, m, r \geq 1, X \subset (0, 1)^{m \times n}$ definable. Then there exist $N \in \mathbb{N}$ and for all $y \in M^n$ a finite set S_y of $N C^r$-functions $(0, 1)^{dimX_y} \to X_y$ such that (1) $\bigcup_{\phi \in S_y} \text{im}(\phi) = X_y$ and (2) $|\phi(x)| \leq 1$ for all $y, \phi \in S_y, \alpha \in \mathbb{N}^{dimX_y}$ with $|\alpha| \leq r$ and $x \in (0, 1)^{dimX_y}$.

Proof. Suppose not, i.e. for every $N \in \mathbb{N}$ there is $y_N \in M^n$ such that ... but this implies that there is $y \in M^n$ such that “Parametrisation theorem does not hold for X_y.”

For $N \in \mathbb{Z}_+$, let $\Gamma_N(v)$ be the set of formulas expressing “for every set of N functions satisfying (2), the union of their images is not X_v.” Let $\Gamma(v) = \bigcup_N \Gamma_N(v)$.

$\Gamma(v)$ is finitely satisfiable. Compactness: there is $N > M$ and $y \in N$ such that $N = \Gamma(y)$.

Main Lemma - siehe Skript.
Theorem 1.8 (Laurent ’80s, conjectured by Lang for curves, “Manin Mumford Conjecture for \mathbb{C}^m” (multiplicative group). Suppose $V \subset (\mathbb{C}^*)^d$ is an irreducible subvariety. Then there are finitely many algebraic subgroups $B_1, ..., B_n$ of $(\mathbb{C}^*)^d$ and $b_1, ..., b_n \in (\mathbb{C}^*)^d$ such that

- $b_i B_i \subset V$ for all i
- $V \cap \mu^d = \bigcup_i b_i (B_i \cap \mu^d)$ (where $\mu^d = \text{Tor}((\mathbb{C}^*)^d)$ and $(B_i \cap \mu^d) = \text{Tor}(B_i)$ and $\mu := \text{roots of unity} \subset \mathbb{C}^*$)

Fact: Every algebraic subgroup of $(\mathbb{C}^*)^d$ is defined by a finite set of equations of the form:

$y_1^{m_{11}} ... y_n^{m_{1n}} = 1, m_i \in \mathbb{Z}$

$y_1^{m_{k1}} ... y_n^{m_{kn}} = 1$

and $\dim B = d - \text{rk}_\mathbb{Q}(m_{ij})$. $LB = \{x \mid M \cdot x = 0\} \subset \mathbb{C}^d$. $\dim LB = \dim B$. In particular,

- If V contains no cosets of infinite algebraic subgroups, then $V \cap \mu^d$ is finite

Proof. See “The case of Tori” onwards. $(\mathbb{C}^*)^d = G_m^d$