Vorlesungsmitschrift Model theory and applications

O-minimality and diophantine geometry

Aktueller Stand: 15. Juli 2013 bei Juan-Diego Caycedo

0 Introduction

Consider the structure $\overline{\mathbb{R}} = (\mathbb{R}, <, +, 0, -, \cdot, 1)$

Remark 0.1. the relation "<" is definable in the structure $(\mathbb{R}, +, 0, -, \cdot, 1)$, because x < y is equivalent to $\exists z (\neg z \doteq 0 \land x + z \cdot z \doteq y)$

 $\mathsf{Th}(\overline{\mathbb{R}}) = \mathsf{RCF}$ is complete and has quantifier elimination.

 $\mathfrak{M} = (M, R_1, R_2, ..., Def(\mathfrak{M})$ is the smallest collection D of subsets of the cartesian product of $M, M^2, ...$ s.t. $R_i \in D$ and D is closed under finite unions, finite intersections, taking complements, projections and cartesian products

Definition 0.1. An ordered structure $\mathfrak{M} = (M, <, ...)$ is *o-minimal*, if every definable subset $X \subset M^1$ is a finite union of singletons and open intervals of the form (a, b) with $a, b \in M \cup \{-\infty, \infty\}$

Generally we consider only ordered structures where the order is dense and has no endpoints

Proposition 0.1. $\overline{\mathbb{R}}$ is o-minimal

Proof. By QE, if $X \subset \mathbb{R}^1$ is definable, then $X = \varphi(\overline{\mathbb{R}})$ for some quantifier-free formula $\varphi(x_0)$

Example 0.1.

- $\mathbb{R}_{exp} = (\overline{\mathbb{R}}, e^x)$ is o-minimal
- $(\mathbb{R}, <)$ is o-minimal
- $(M, <) \models \mathsf{DLO}$ is o-minimal
- $(\mathbb{Q}, \langle +, \cdot, -, 0, 1)$ is not o-minimal (Take the set $X = \{x \in \mathbb{Q} \mid \exists y \ y^2 = x\}$)

0.1 The Rila-Wilke Theorem

Definition 0.2. A point in \mathbb{R}^n all of whose coordinates are rational is called *rational point*

Remark 0.2.

• Algebraic curves:

-y = f(x) with $f \in \mathbb{Q}(X)$ has many rational points $-x^n + y^n = 1$ for n = 2 many rational points, for n > 2 very few (finite) • Non-algebraic curves:

 $-y = e^x$ has only one rational point (0,1)

 $-y = 2^x$ has infinitely many rational points: all $(m, 2^m)$ with $m \in \mathbb{Z}$

Definition 0.3 (Height of rational numbers). For $x \in \mathbb{Q}, x = \frac{a}{b}$ with $a, b \in \mathbb{Z}$, (a, b) = 1. Define $h(x) = \max\{|a|, |b|\}$ For $x \in \mathbb{Q}^n$, $x = (x_1, ..., x_n)$ let $h(x) \coloneqq \max_{i \in \{1, ..., n\}} h(x_i)$

Remark 0.3. Let $r \in \mathbb{Z}_{>0}$, then $\{x \in \mathbb{Q} \mid h(x) \leq r\}$ is finite and has cardinality $\leq 2r^2 + 1$

Definition 0.4. Given $X \subset \mathbb{R}^n$, let $N(X, r) = |\{x \in X \mid x \in \mathbb{Q}^n \text{ and } h(x) \leq r\}|$

Example 0.2.

- If $X = \mathbb{R} \subset \mathbb{R}^1$. $N(X, r) \sim r^2$. The same holds whenever X is the graph of a rational function
- If $X: y = 2^x$, $N(X, r) \sim \log_2 N(\mathbb{R}, r)$

Fact The probability of two randomly chosen positive integers being relatively prime is $\frac{6}{\pi^2}$

$$\Rightarrow \lim_{r \to \infty} \frac{N(\mathbb{R}, r)}{r^2} = \frac{?}{r^2}$$

Exercise 0.1. $N(\mathbb{R}, r) = ?$

Higher dimensions: $X = \{(x, y, z) \in \mathbb{R}^3 \mid x^y = z\}$ is non-algebraic, but contains for each $y \in \mathbb{Q}$ the algebraic set $\left\{(x, \underbrace{y}, z) \mid x^y = z\right\} = X_y$

Definition 0.5. For $X \subset \mathbb{R}^n$, let X^{alg} , the algebraic part of X, be the union of all connected, infinite semialgebraic sets contained in X and let X^{tr} , the transcendental part of X, be $X \times X^{alg}$

Theorem 0.1 (Pila-Wilkie). Suppose $X \in \mathbb{R}^n$ is definable in o-min structure $(\mathbb{R}, <, ...)$, then for every $\varepsilon > 0$ there is a constant $c \in \mathbb{R}$ such that $N(X^{tr}, r) \leq cr^{\varepsilon}$ (subpolynomial)

Conjecture (Wilkie). Suppose $X \subset \mathbb{R}^n$ is definable in \mathbb{R}_{exp} , then there exist constants c_1, c_2 s.t. $N(X^{tr}, r) \leq c_1(\ln r)^{c_2}$

0.2 The (Pila-Zannier proof of the) Manin Mumford Conjecture

Theorem 0.2 (Manin-Mumford Conjecture for $(\mathbb{C}^{\times}, \cdot)$). Suppose $V \subset (\mathbb{C}^{\times})^n$ is an algebraic subvariety (For us, an algebraic variety is a subset of some \mathbb{C}^n defined by a (finite) system of polynomial equations). Then there exist $b_1, ..., b_n \in$ μ^n and algebraic subgroups (This means in practice, each B_i is defined by a system of equations of the form $x_1^{m_1} \cdot \ldots \cdot x_n^{m_n} = 1$, $m \in \mathbb{Z}$) B_1, \ldots, B_m of \mathbb{C}^n s.t.

$$V \cap \mu^n = \bigcup_{i=1}^m b_i (B_i \cap \mu^n)$$

where μ denotes the set of roots of unity

 $\mathbb{R} \to S^{1}$ $t \mapsto e^{\tau i t}$ $\mathbb{C} \to \mathbb{C}^{\times}$ $z \mapsto e^{iz}$ $(\mathbb{R}, <, ..., \exp), \text{ then } \{z \mid \exp(z) = 1\} = \{(0, 2\pi k) \mid k \in \mathbb{Z}\} \subset \mathbb{R}^{2} \text{ (not o-minimal)}$

1 O-minimal structures

(following: Speissegger - "O-minmal structures", Peterzil - "A selfguide to o-minimality",

van den Dries - "Tame topology and o-minimal structures")

Definition 1.1. $\mathfrak{M} = (M, <)$ is an *ordered structure* if < is a dense linear order without end points on M

From now on, \mathfrak{M} is always an ordered structure. This yields the order topology on \mathfrak{M} : The topology with basic open sets (a, b) with $a, b \in M \cup \{-\infty, \infty\}$ M^n : the topology with basic open sets $I = I_1 \times \ldots \times I_n$ where each I_i is an open interval (I is an open box).

Remark 1.1. If $M = \mathbb{R}$, then these are the usual topologies on \mathbb{R}, \mathbb{R}^2 ...

Definition 1.2. A subset $S \subset M^n$ is *definably connected* if there are no definable open sets $U, V \subset M^n$ such that

- $S = (S \cap U) \cup (S \cap V)$
- $(S \cap U) \cap (S \cap V) = \emptyset$
- $S \cap U$ and $S \cap V$ are non-empty

Remark 1.2. If S is connected, then it is definably connected

- **Exercise 1.1.** (1) The image of a definably connected definable set under a definable continuous map is definably connected
- (2) Let $S, T \subset M^n$ be definably connected definable sets with $clS \cap T \neq \emptyset$, then $S \cup T$ is definably connected

Definition 1.3. \mathfrak{M} is *definably complete* if every definable subset of M has an infimum and a supremum in $M \cup \{-\infty, \infty\}$

Exercise 1.2. Assume \mathfrak{M} is definably complete

(1) Every interval is definably connected

(2) (Intermediate Value Theorem) Let $f, g: I \to M$ be definable and continuous, with $I \subset M$ an interval. Assume $f(x) \neq g(x), \forall x \in I$ Then: Either $f(x) > g(x), \forall x \in I$ or $f(x) < g(x), \forall x \in I$

Definition 1.4. \mathfrak{M} is *o-minimal* if every definable subset of M is a finite union of points and intervals

Remark 1.3. If \mathfrak{M} is o-minimal, then it is definably complete

Assume \mathfrak{M} is o-minimal for the rest of the section

Exercise 1.3. (1) Every infinite definable subset of M contains an interval

(2) If $A \subset M^{n+1}$ is definable, then $\{x \in M^n \mid A_x \text{ is finite}\}$ is definable $(A_x := \{a \in M \mid (a, x) \in A\}$

Lemma 1.1. Let $S \subset M$ be definable and $a \in M$, then there exists $\varepsilon > a$ in M such that $(a, \varepsilon) \subset S$ or $(a, \varepsilon) \subset M \setminus S$.

 $\mathfrak{N}\equiv\mathfrak{M},\ \mathfrak{M}$ o-minimal $\Rightarrow\mathfrak{N}$ o-minimal

Definition 1.5. Let \mathfrak{M} be a structure. \mathfrak{M} is minimal if every definable subset of M is finite or has finite complement.

Exercise 1.4. \mathfrak{M} ordered structure, o-minimal. Then the following are equivalent:

- (1) Every $\mathfrak{N} \equiv \mathfrak{M}$ is o-minimal.
- (2) For every definable family $\{X_a \mid a \in M^k\}$ of finite subsets of M, there is $k \in \mathbb{N}$ such that X_a is the union of $\leq k$ points
- (3) For every definable family $\{X_a \mid a \in M^k\}$ of subsets of M there is $k \in \mathbb{N}$ such that X_a is the union of $\leq k$ points and intervals

1.1 Monotonicity

 \mathfrak{M} o-minimal, $f: I \to M$ a definable function with I = (a, b)

Definition 1.6. f is strictly monotone if f is constant, strictly increasing or strictly decreasing.

For $c \in I$, f is constant/strictly increasing/strictly decreasing/strictly monotone at c if there exist $c_1 < c < c_2$ such that $f \mid_{(c_1,c_2)}$ is constant/strictly increasing/strictly decreasing/strictly monotone.

- **Exercise 1.5.** 1. If f s strictly monotone at every $c \in I$, then f is strictly monotone
 - 2. Assume f is strictly monotone, then there is an open interval $J \supset I$ such that $f \mid_J$ is continuous.

Lemma 1.2. Assume f(x) > x for all $x \in I$, then there exists an open interval $J \supset I$ and c > J such that f(x) > c for all $x \in J$

Proposition 1.1. Let $S \subset I^2$ be definable. There exists an open interval $J \subset I$ such that

$$\Delta^{>}(J) \coloneqq \left\{ (x, y) \in J^2 \mid y > x \right\}$$

is either a subset of S or of $I^2 \smallsetminus S$

Remark 1.4. Finite Ramsey: For every n, there is N such that every 2-coloring of $[N]^2$ has a monochromatic set of size n

Corollary 1.1. Let $S_1, ..., S_k \subset M^2$ be definable. Assume $I^2 \subset \bigcup_{i=1}^k S_i$, then there exists $i \in \{1, ..., k\}$ and an open interval $J \subset I$ such that $\Delta^>(J) \subset S_i$

Corollary 1.2. $f: I \to M$ definable, then there exists $J \subset I$ such that $f \mid_J$ is strictly monotone

Theorem 1.1. Monotonicity theorem (\mathfrak{M} o-minimal, I = (a, b) interval, $f : I \to M$ definable)

There exist $k \in \mathbb{N}$ and $a_1, ..., a_k \in I$ such that $a_0 \coloneqq a < a_1 < ... < a_k < a_{k+1} \coloneqq b$ and for every $i \in \{0, ..., k\}$, $f|_{(a_i, a_{i+1})}$ is strictly monotone and continuous.

Proof. Let $B = \{x \in I \mid f \text{ is strictly monotone and continuous at } x\} \subset I$ (definable).

Claim: $I \\ B$ is finite. Thus let $a_1, ..., a_k$ be an enumeration of $I \\ B$ and let $a_0 \coloneqq a, a_{k+1} \coloneqq b$. For each $i \in \{0, ..., k\}$, f is strictly monotone and continuous at every $x \in (a_i, a_{i+1})$

 $\Rightarrow f|_{(a_i,a_{i+1})}$ is strictly monotone and continuous.

Proof of claim: Suppose not, then by o-minimality, $I \\ B$ contains an open interval J. By the corollary there is $J' \\ \subset J$ such that f is strictly monotone on J'. By Exercise, there is an Intervall $J'' \\ \subset J'$ such that f is continuous in J'', but then $J' \\ \subset I \\ B \\ \subset B \\ \not L$

Corollary 1.3. $f: I = (a, b) \rightarrow M$ definable

- (i) The limits $\lim_{x \to a^+} f(x)$, $\lim_{x \to b^-} f(x)$ and, for every $c \in (a, b)$, the limits $\lim_{x \to c^-} f(x)$, $\lim_{x \to c^+} f(x)$ exist in $M \cup \{-\infty, \infty\}$
- (ii) If $a, b \in M, g : [a, b] \to M$ definable and continuous, then g has maximum and minimum in [a, b]

1.2 Definable Compactness

Siehe Bachelorarbeit S.18

Definition 1.7. A definable set $S \subset M^n$ is *definably compact* if for every interval (a, b) ind M and every continuous definable function $\gamma : (a, b) \to S \subset M^n$, the limits $\lim_{x \to a^+} \gamma(x)$ and $\lim_{x \to b^-} \gamma(x)$ belong to S

Remark 1.5. If S is compact, then S is definably compact (?)

Lemma 1.3. If $S \subset M^n$ is definably compact, then $\pi_{n-1}(S)$ (projection onto the last n-1 coordinates) is definably compact

Proof. Let (a, b) be an interval in M and $\gamma : (a, b) \to \pi_{n-1}(S) \subset M^{n-1}$ definable. Note: for all $x \in \pi_{n-1}(S)$, $S_x := \{y \in M : (x, y) \in S\}$ is a definable subset of M. Note that by the definable compactness of S, if $(c, d) \subset S_x$, then $c, d \in S_x$, this means that S_x is closed and bounded. Thus, for every $x \in \pi_{n-1}(S)$, $(x, \inf S_x) \in S$ Define: $\gamma': (a, b) \to S, z \mapsto (\gamma(z), \inf S_{\gamma(z)})$. By definable compactness $\lim_{z \to a^-} \gamma'(z)$ and $\lim_{z\to b^+} \gamma'(z)$ are in S. Hence $\lim_{z\to a^-} \gamma(z)$ and $\lim_{z\to b^+} \gamma(z)$ are in $\pi_{n-1}(S)$

Theorem 1.2. Let S be a definable subset of M^n . S is definably compact iff S is closed and bounded.

Proof. " \Leftarrow " by monotonicity theorem " \Rightarrow " Assume S is definably compact.

- S is bounded: S is bounded iff the image of S under every projection onto a single coordinate is bounded. Therefore by Lemma 1.3 we can assume n = 1, which is easy.
- S is closed: By induction on n.

n = 1: easy.

- $n \ge 2$: Suppose that $(x, y) \in \overline{S} \setminus S$, where $x \in M^{n-1}, y \in M$.
 - * $S_x \coloneqq \{z \in M \mid (x, z) \in S\}$ is closed * $S_x = \overline{S_x}$

There is a closed interval I with $y \in \operatorname{int} I$ and $I \cap S_x = \emptyset$. Let $D \subset M^{n-1}$ be a closed box with $x \in \text{int} D$. Let $S_1 \coloneqq S \cup (D \times I)$

* $(x,y) \in \overline{S_1}$

*
$$x \in \overline{\pi_{n-1}(S_1)} \setminus \pi_{n-1}(S_1)$$
, since:

$$(\{x\} \times I) \cap S = \{x\} \times \underbrace{(I \cap S_x)}_{=\emptyset}$$

- * (IH) $\pi_{n-1}(S_1)$ is not definably compact
- * S_1 is not definably compact $\Rightarrow S$ is not definably compact

1.3Cells and cell decomposition

(B.A. Seite 21)

Definition 1.8 (Cells). Let $\sigma \in \{0,1\}^n$, let $\sigma' \coloneqq \sigma \mid_{n-1}$. A definable subset $C \subset M^n$ is a σ -cell, if one of the following holds:

- (i) $n = 1, \sigma(0) = 0, C = \{a\}$ for some $a \in M$
- (ii) $n = 1, \sigma(0) = 1, C$ is a (non-empty) open interval
- (iii) n > 1, $\sigma(n-1) = 0$, $C' = \pi_{n-1}$ is a σ' -cell and C is the graph of a definable function from C' to M
- (iv) $n > 1, \sigma(n-1) = 1, C'$ is a σ' -cell and $C = (f,g)_{C'} := \{(x,y) \mid x \in C', f(x) < y < g(x)\}$ for some definable $f, g: C' \to M$

Lemma 1.4. If $C \subset M^n$ is a cell and $m \leq n$, then $\pi_m(C)$ and for any $a \in \pi_m(C)$ the $C_a = \{y \in M^{n-m} \mid (a, y) \in C\}$ are cells.

Proof. That $\pi_m(C)$ is a cell holds by definition. $\pi_m^n = \pi_m^{m+1} \circ ... \circ \pi_{n-2}^{n-1} \circ \pi_{n-1}^n$. $C = (f_{n-1}, g_{n-1})_{\pi_{n-1}^n(C)}, \pi_{m+2}^n(C) = (f_{m+1}, g_{m+1})_{\pi_{m+1}^n(C)}$ $... \pi_{m+1}^n(C) = (f_m, g_m)_{\pi_m^n(C)}, a \in \pi_m^n(C)$ C_a is the cell obtained as follows:

- $C_0 = (f_m(a), g_m(a))$
- $C_1 = (f_{m+1}(a, x), g_{m+1}(a, x))_{C_0} \subset M^2$:
- $C_{n-m-1} = (f_{n-1}(a,x), g_{n-1}(a,x))_{C_{n-m-2}} \subset M^{n-m}$

 $1 \leq m \leq n$ let π_m^n be the projection onto the first m coordinates. If $\iota : \{1,...,m\} \rightarrow \{1,...,n\}$ is strictly increasing $\pi_\iota : M^n \rightarrow M^n$, $(x_1,...,x_n) \mapsto (x_{\iota_1},...,x_{\iota_m})$

Definition 1.9. Let $C \subset M^n$ be a σ -cell

- (1) C is open if $\sigma(i) = 1, \forall i \in n$
- (2) $\sum \sigma \coloneqq \sum_{i=0}^{n-1} \sigma(i)$
- (3) Let $\iota_{\sigma} : \{1, ..., \Sigma \sigma\} \to \{1, ..., n\}$ be strictly increasing enumeration of the elements $i \in \{1, ..., n\}$ such that $\sigma(i-1) = 1$

Lemma 1.5. A cell C is an open cell iff it is an open set

Lemma 1.6. Let $C \subset M^n$ be a cell. Then $C_{\sigma} := \prod_{\iota_{\sigma}} (C) \subset M^{\sum \sigma}$ is an open cell and $\pi_{\iota_{\sigma}}|_{C}: C \to C^{\sigma}$ is a definable homeomorphism

Proposition 1.2. Every cell in M^n is definably connected

- **Definition 1.10.** (1) Let C be a finite collection of cells in M^n and $U \subset M^n$. C is a *cell decomposition of* U if C is a partition of U and, if $n \ge 2$, the set $\prod_{n-1}(C) := \{\prod_{n-1}(C) \mid C \in C\}$ is a cell decomposition of $\prod_{n-1}(U)$
- (2) If $Z \subset U$, then \mathcal{U} is *compatible* with Z if for every cell $C \in \mathcal{C}$ either $C \subseteq Z$ or $C \cap Z = \emptyset$
- (3) If C and D are cell decompositions of U, we say that D is a *refinement* of C, if D is compatible with every $C \in C$

Example 1.1. Consider the set $S = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ (13 cells for all of \mathbb{R}^2)

Remark 1.6. • Let C be a cell decomposition of $U \subset M^{n+m}$ and let $x \in M^n$. Then $C_x = \{C_x \mid C \in C\}$ is a cell decomposition of $U_x = \{y \in M^m \mid (x, y) \in U\}$

Proof. by induction on m

• Let $Z - 1, ..., Z_k \subset M^n$ and let \mathcal{B} be the boolean algebra generated by them. Then: a cell decomposition of M^n is compatible with the Z_i iff it is compatible with all atoms of \mathcal{B}

Proof. Every atom B of \mathcal{B} has the form $B = B_1 \cap ... \cap B_k$, where each B_i is either Z_i or $M^n \smallsetminus Z_i$ " \Leftarrow " clear.

" \Rightarrow " If \mathcal{C} is compatible with the Z_i , for each atom B of \mathcal{B}

- if C contains every B_i , then C is contained in B
- If C is disjoint for some B_i , then C is disjoint from \mathcal{B}

Theorem 1.3 (Cell Decomposition Theorem). (Siehe "Zellzerlegung O-minimalen Strukturen")

- $(I)_n$ Let $S_1, ..., S_k \subset M^n$ be definable. Then there is a cell decomposition of M^n that is compatible with every S_i
- $(II)_n$ Let $f: S \to M$ be definable with $S \subset M^n$ definable. Then there is a cell decomposition C of M^n compatible with S such that for every $C \in C$, $f \upharpoonright_C$ is continuous.

Proof. By induction

n = 1 I_n follows easily from the definition of o-minimality, II_n is the monotonicity theorem.

n > 1

Lemma 1.7. Let $S \subset M^n$ be definable. The following are equivalent

- (1) S is sparse if (Definition) $int(S) = \emptyset$ (Remark: A cell is sparse iff it is not open)
- (2) The set $S' := \{x \in M^{n-1} \mid S_x \text{ is infinite}\}$ is sparse
- (3) S is nowhere dense, if (Definition) $int(\overline{S}) = \emptyset$

In particular, a finite union of sparse subsets of M^n is sparse

 $Proof 1 \Rightarrow 2$ Assume S' is not sparse. Then we can find an open box $U \subset S'$. For any $x \in U$, since $S_x \subset M$ is infinite, S_x contains an interval.

Fix a decomposition of S_x as a union of finitely many open intervals and points. Let $I_x :=$ the first open interval in the decomposition. $i_x := \begin{cases} \inf I_x & \text{if } \inf I_x \in M \\ \text{a point } \inf I_x & \text{otherwise} \end{cases}$

$$\int_{X} \sup I_x \in M$$
 if $\sup I_x \in M$

 $S_x \coloneqq \begin{cases} z & z \\ a \text{ point in } I_x \text{ greater than } i_x & \text{otherwise} \end{cases}$

 i_x and S_x are definable functions on U. By II_{n-1} , there is a cell decomposition \mathcal{C} of M^{n-1} with U such that $i_x \mid_C$ and $S_x \mid_C$ are continuous for any $C \in \mathcal{C}$. Then there is an open cell $C' \in \mathcal{C}$ contained in U (whence $(i_x \mid_{C'}, S_x \mid_{C'})_{C'}$ is an open cell and is contained in S)

(Note: U cannot be a finite union of non-open cells)

BLabla, siehe Bachelorarbeit/Ziegler

1.4 The Pila-Wilkie Theorem

Theorem 1.4. Let $\mathcal{R} = (\mathbb{R}, <, +, \cdot, -, 0, 1, ...)$ be an o-minimal expansion of the real field. Let $X \subset \mathbb{R}^n$ be definable in \mathcal{R} . Then for every $\varepsilon > 0$, there is $c = c(X, \varepsilon) > 0$ such that $\forall T \ge 1 N(X^{tr}, T) \le cT^{\varepsilon}$, where

- $X^{tr} = X \setminus X^{alg}, X^{alg} = \bigcup \{Y \mid Y \subset X \text{ is infitine, connected, semialgebraic} \}$
- For $X \subset \mathbb{R}^n$, $N(X,T) = |X(\mathbb{Q},T)| := |\{x \in X \mid x \in \mathbb{Q}^n \land H(x) \le T\}|$

For $q \in \mathbb{Q}^n$, $H(q) = \max(q_i)$, for $q \in \mathbb{Q}^{\times}$, $H(q) \coloneqq \max(|a|, |b|)$, if $q = \frac{a}{b}$, gcd(a, b) = 1, H(0) = 0.

Theorem 1.5 ((Uniform Pila-Wilkie)). Let \mathcal{R} be an o-minimal expansion of $(\mathbb{R}, <, +, \cdot, -, 0, 1)$. Let $(X_b)_b$ be a definable family of subsets of \mathbb{R}^n . For every $\varepsilon > 0$, there exists a family $(Y_b)_b$ and $c = c((X_b)_b, \varepsilon)$ such that for every $b \in B$

- $Y_b \subset X_b^{alg}$
- $\forall T \geq 1, N(X_b \setminus Y_b, T) \leq cT^{\varepsilon}$

Definition 1.11. A hypersurface of degree d in \mathbb{R}^n is a set of the form $\{x \in \mathbb{R}^n \mid f(x) = 0\}$ where $f \in \mathbb{R}[X]$ has degree d.

Definition 1.12. Let $X \subset \mathbb{R}^n$, $k \in \mathbb{Z}_+$. A partial k-parametrisation of X is a function $f: (0,1)^{\dim X} \to X$ such that $\forall \alpha \in \mathbb{N}^{\dim X}$ with $|\alpha| \leq k$ $(|\alpha| := \sum \alpha_i)$:

- $f^{(\alpha)}$ is continuous
- $|f^{(\alpha)}| \leq 1, \forall x \in (0,1)$

Definition 1.13. A *k*-parametrisation of X is a finite set S of partial parametrisations of X such that $\bigcup_{f \in S} im(f) = X$

Theorem 1.6 (Bombieri-Pila). Given 0 < m < n, d > 0, there exist $k = k(m, n, d) \in \mathbb{Z}_+, \varepsilon = \varepsilon(m, n, d) > 0$ and c = c(m, n, d) > 0 such that if $f : (0, 1)^m \to X$ is a k-parametrisation of its image, then $X(\mathbb{Q}, T) \subset union \text{ of } \leq cT^{\varepsilon}$ hypersurfaces of degree d. Moreover, $\varepsilon \to 0$ as $d \to \infty$.

Let \mathcal{M} be an o-minimal expansion of a real closed field \mathcal{M} .

- **Definition 1.14.** An element $a \in M$ is strongly bounded if there is $N \in \mathbb{N}$ such that $|a| \leq N$
 - $a \in M^n$ is strongly bounded if there is $N \in \mathbb{N}$ such that $|a| \coloneqq \max |a_i| \le N$
 - A subset A of M^n is strongly bounded if there is $N\in\mathbb{N}$ such that $|a|\leq N \forall a\in A$

Theorem 1.7 (Parametrisation Theorem). Let X be a strongly bounded definable subset of M^n , for every $k \in \mathbb{Z}_+$, there exists a definable k-parametrisation of X.

Corollary 1.4. Let $m, r \ge 1, X \subset (0, 1)^m$ definable. Then there exist a finite set S of functions $(0, 1)^{\dim X} \to X$ of class C^r such that $\bigcup_{\phi \in S} \operatorname{im}(\phi) = X$ and $|\phi^{(\alpha)}(x)| \le 1$ for all $\phi \in S, \alpha \in \mathbb{N}^{\dim X}$ with $|\alpha| \le r$ and $x \in (0, 1)^{\dim X}$.

Definition 1.15. A partial *r*-parametrisation of *X* is a C^r -function $f: (0,1)^{\dim X} \to X$ such that $\forall \alpha \in \mathbb{N}^{\dim X}$ with $|\alpha| \leq r, \forall x | f^{(\alpha)}(x) | \leq N$ for some $N \in \mathbb{N}$.

proof of corollary. Let S be an r-parametrisation of X. Cover $(0,1)^{\dim X}$ with $N^{\dim X}$ cubes of side $\frac{1}{N}$ and for each cube K, let $\lambda_K : (0,1)^{\dim X} \to K$ be the obvious bijection. Let $S := \{\phi \circ \lambda_K \mid \phi \in S^K, K \text{ is one of the cubes}\}, d := \dim X.$

$$\mathbb{R}^{\phi} \xrightarrow{\lambda} \mathbb{R}^{d} \xrightarrow{\phi} \mathbb{R}^{n}$$

$$\frac{\partial(\phi \circ \lambda)}{\partial x_i}(x) = \frac{\partial \phi}{\partial \lambda}(\lambda(x)) \cdot \frac{\partial \lambda}{\partial x_i}(x) = \frac{1}{N} \cdot \frac{\partial \phi}{\partial x_i}(\lambda(x))$$
$$\frac{\partial(\phi \circ \lambda)}{\partial^{\alpha_1} x_1 \dots \partial^{\alpha_d} x_d} = \left(\frac{1}{N}\right)^{|\alpha|} \frac{\partial \phi}{\partial^{\alpha_1} x_1 \dots \partial^{\alpha_d} x_d} \le \frac{1}{N} \cdot N$$

Corollary 1.5 (Uniform parametrisation Theorem). Let $n, m, r \ge 1, X \subset (0, 1)^m \times M^n$ definable. Then there exist $N \in \mathbb{N}$ and for all $y \in M^n$ a finite set S_y of $N C^r$ -functions $(0,1)^{\dim X_y} \to X_y$ such that $(1) \bigcup_{\phi \in S_y} \operatorname{im}(\phi) = X_y$ and $(2) |\phi^{(\alpha)}(x)| \le 1$ for all $y, \phi \in S_y, \alpha \in \mathbb{N}^{\dim X_y}$ with $|\alpha| \le r$ and $x \in (0,1)^{\dim X_y}$.

Proof. Suppose not, i.e. for every $N \in \mathbb{N}$ there is $y_N \in M^n$ such that ... but this implies that there is $y \in M^n$ such that "Parametrisation theorem does not hold for X_y ".

For $N \in \mathbb{Z}_+$, let $\Gamma_N(v)$ be the set of formulas expressing "for every set of N functions satisfying (2), the union of their images is not X_v ". Let $\Gamma(v) = \bigcup_N \Gamma_N(v)$.

 $\Rightarrow \Gamma(v)$ is finitely satisfiable. Compactness: there is $\mathcal{N} > M$ and $y \in \mathcal{N}$ such that $\mathcal{N} \models \Gamma(y)$.

Main Lemma - siehe Skript.

Theorem 1.8 (Laurent '80s, conjectured by Lang for curves, "Manin Mumford Conjecture for \mathbb{C}_m " (multiplicative group). Suppose $V \subset (\mathbb{C}^{\times})^d$ is an irreducible subvariety. Then there are finitely many algebraic subgroups $B_1, ..., B_n$ of $(\mathbb{C}^{\times})^d$ and $b_1, ..., b_n \in (\mathbb{C}^{\times})^d$ such that

- $b_i B_i \subset V$ for all i
- $V \cap \mu^d = \bigcup_i b_i(B_i \cap \mu^d)$ (where $\mu^d = \operatorname{Tor}((\mathbb{C}^{\times})^d)$ and $(B_i \cap \mu^d) = \operatorname{Tor}(B_i)$ and $\mu := roots \text{ of unity} \subset \mathbb{C}^{\times}$)

Fact: Every algebraic subgroup of $(\mathbb{C}^{\times})^d$ is defined by a finite set of equations of the form:

$$y_1^{m_{11}} \dots y_n^{m_{1n}} = 1, m_i \in \mathbb{Z}$$

...
 $y_1^{m_{k1}} \dots y_n^{m_{kn}} = 1$

and dim $B = d - rk_{\mathbb{Q}}(m_{ij})$. $LB = \{x \mid M \cdot x = 0\} \subset \mathbb{C}^d$. dim $LB = \dim B$. In particular,

• If V contains no cosets of infinite algebraic subgroups, then $V \cap \mu^d$ is finite

Proof. See "The case of Tori" onwards. $(\mathbb{C}^{\times})^d = \mathbb{G}_m^d$