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0 Introduction
Consider the structure R = (R, <, +,0,—,-,1)

Remark 0.1. the relation “<” is definable in the structure (R, +,0,-,-,1), be-
cause x < y is equivalent to 3z(-z=0Ax+2-22y)

Th(R) = RCF is complete and has quantifier elimination.

M = (M, Ry, R, ...,, Def(9M) is the smallest collection D of subsets of the
cartesian product of M, M2, ... s.t. R; € D and D is closed under finite unions,
finite intersections, taking complements, projections and cartesian products

Definition 0.1. An ordered structure 9 = (M,<,...) is o-minimal, if every
definable subset X c M! is a finite union of singletons and open intervals of the
form (a,b) with a,be M U {-o0,00}

Generally we consider only ordered structures where the order is dense and has
no endpoints

Proposition 0.1. R is o-minimal

Proof. By QE, if X c R! is definable, then X = ¢(R) for some quantifier-free
formula ¢(zg) O

Example 0.1.

e R, = (R,e”) is o-minimal
e (R,<) is o-minimal
e (M,<) =DLO is o-minimal

e (Q,<,+,-,—,0,1) is not o-minimal (Take the set X = {:c eQlIyy’= x})

0.1 The Rila-Wilke Theorem

Definition 0.2. A point in R" all of whose coordinates are rational is called
rational point

Remark 0.2.

e Algebraic curves:

— y = f(x) with f € Q(X) has many rational points

— 2™ +y" =1 for n = 2 many rational points, for n > 2 very few (finite)



e Non-algebraic curves:

— y = ¢” has only one rational point (0,1)
— y = 2" has infinitely many rational points: all (m,2™) with m € Z
Definition 0.3 (Height of rational numbers).

For z € Q,z = § with a,b€Z, (a,b) = 1. Define h(z) = max {|a|, [b[}
For x € Q", z = (z1,...,2,) let h(z) = max }h(:cl-)

ie{l,....n

Remark 0.3. Let r € Z.o, then {z € Q| h(z) <r} is finite and has cardinality
<2r?+1

Definition 0.4. Given X cR", let N(X,r)=|{z € X |z € Q" and h(z) <7}|

Example 0.2.

e If X =RcR! N(X,r)~7r% The same holds whenever X is the graph of
a rational function

o If X:y=2" N(X,r)~logy, N(R,7)

Fact The probability of two randomly chosen positive integers being rela-

tively prime is %

N ?
= lim 7(}1&7“) = —
r—00 r2 r2

Exercise 0.1. N(R,r) =7
Higher dimensions: X = {(w,y,z) eR3|2Y = z} is non-algebraic, but

contains for each y € Q the algebraic set { (z, y,2) |z¥ =z} = X,
@
Definition 0.5. For X c R", let X9, the algebraic part of X, be the union

of all connected, infinite semialgebraic sets contained in X and let X", the
transcendental part of X, be X \ X9

Theorem 0.1 (Pila-Wilkie). Suppose X c R"™ is definable in o-min structure
(R,<,...), then for every e > 0 there is a constant c € R such that N(X'",r) < er€
(subpolynomial)

Conjecture (Wilkie). Suppose X c R™ is definable in R.,p, then there exist
constants c1,cz s.t. N(X™ 1) < ci(Inr)e

0.2 The (Pila-Zannier proof of the) Manin Mumford Con-
jecture

Theorem 0.2 (Manin-Mumford Conjecture for (C*,-)). Suppose V c (C*)™
is an algebraic subvariety (For us, an algebraic variety is a subset of some C"
defined by a (finite) system of polynomial equations). Then there exist by, ..., b, €



u™ and algebraic subgroups (This means in practice, each B; is defined by a

system of equations of the form "' -...-a'" =1, meZ) By,..., B, of C" s.t.
m
Viap"=UJbi(Binpu")
i=1

where 1 denotes the set of roots of unity

R - S?
t'_)eTit
C-C~
Z'—>€iz

(R,<,...,exp), then {z | exp(z) = 1} = {(0,27k) | k € Z} c R? (not o-minimal)

1 O-minimal structures

(following: Speissegger - “O-minmal structures”, Peterzil - “A selfguide to o-
minimality”,
van den Dries - “Tame topology and o-minimal structures”)

Definition 1.1. 9 = (M, <) is an ordered structure if < is a dense linear order
without end points on M

From now on, 9 is always an ordered structure. This yields the order topo-
logy on 9: The topology with basic open sets (a,b) with a,be M U {-00,00}
M™: the topology with basic open sets I = I; x ... x I, where each I; is an open
interval (I is an open box).

Remark 1.1. If M =R, then these are the usual topologies on R, R?...

Definition 1.2. A subset .S ¢ M™ is definably connected if there are no definable
open sets U,V ¢ M"™ such that

e S=(SnU)u(SnV)
e (SNU)N(SnV)=2
e SnU and SnV are non-empty
Remark 1.2. If S is connected, then it is definably connected

Exercise 1.1. (1) The image of a definably connected definable set under a
definable continuous map is definably connected

(2) Let S,T ¢ M™ be definably connected definable sets with /S nT # @, then
S uT is definably connected

Definition 1.3. 91 is definably complete if every definable subset of M has an
infimum and a supremum in M U {-oc0, 00}

Exercise 1.2. Assume 90 is definably complete

(1) Every interval is definably connected



(2) (Intermediate Value Theorem) Let f,g: I — M be definable and continuous,
with I ¢ M an interval. Assume f(z) # g(x), Vo el
Then: Either f(z) > g(z),Vz el or f(z)<g(x),Vrel

Definition 1.4. 91 is o-minimal if every definable subset of M is a finite union
of points and intervals

Remark 1.3. If 9 is o-minimal, then it is definably complete
Assume 9 is o-minimal for the rest of the section
Exercise 1.3. (1) Every infinite definable subset of M contains an interval

(2) If A c M™*! is definable, then {z € M™ | A, is finite} is definable (4, :=
{aeM|(a,x)ec A}

Lemma 1.1. Let S ¢ M be definable and a € M, then there exists € > a in M
such that (a,e) c S or (a,e) c M\ S.

N =9, M o-minimal = N o-minimal

Definition 1.5. Let 91 be a structure. 9t is minimal if every definable subset
of M is finite or has finite complement.

Exercise 1.4. 9 ordered structure, o-minimal. Then the following are equiva-
lent:

(1) Every 91 =9 is o-minimal.

(2) For every definable family {X, |aeM*} of finite subsets of M, there is
k € N such that X, is the union of < k points

(3) For every definable family {X,, | a € M*} of subsets of M there is k € N such
that X, is the union of < k points and intervals

1.1 Monotonicity
M o-minimal, f:I — M a definable function with I = (a,b)

Definition 1.6. f is strictly monotone if f is constant, strictly increasing or
strictly decreasing.

For ce I, f is constant/strictly increasing/strictly decreasing/strictly monotone
at ¢ if there exist ¢; < ¢ < ¢z such that f |, ,) is constant/strictly increa-
sing/strictly decreasing/strictly monotone.

Exercise 1.5. 1. If f s strictly monotone at every c € I, then f is strictly
monotone

2. Assume f is strictly monotone, then there is an open interval J > I such
that f | is continuous.

Lemma 1.2. Assume f(x) > x for all x € I, then there exists an open interval
J oI and c>J such that f(z)>c for all x € J



Proposition 1.1. Let S c I? be definable. There exists an open interval J c I
such that

A () = {(ey) € 2 |y > x)
is either a subset of S or of I>\ S

Remark 1.4. Finite Ramsey: For every n, there is N such that every 2-coloring
of [N]? has a monochromatic set of size n

k

Corollary 1.1. Let Sy, ..., S, ¢ M? be definable. Assume I* c (U Si, then there
i=1

exists i € {1,...,k} and an open interval J c I such that A>(J) c S;

Corollary 1.2. f: I - M definable, then there exists J c I such that f |; is
strictly monotone

Theorem 1.1. Monotonicity theorem (9 o-minimal, I = (a,b) interval,
f:I—> M definable)

There exist k € N and ay,...,ax € I such that ag:=a<ay <...<ag < agy1 :=b and
for every i € {0, ...k}, f |(a;,a5.1) @5 strictly monotone and continuous.

Proof. Let B={z e[| f is strictly monotone and continuous at 2} c I (defina-
ble).

Claim: I \ B is finite. Thus let aq,...,ax be an enumeration of I ~ B and let
ap = a, ag41 = b. For each i € {0, ..., k}, f is strictly monotone and continuous at
every x € (a;, ai41)

= [ |(as,a:,1) 18 strictly monotone and continuous.

Proof of claim: Suppose not, then by o-minimality, I ~ B contains an open
interval J. By the corollary there is J’ ¢ J such that f is strictly monotone on
J’'. By Exercise, there is an Intervall J” c J’ such that f is continuous in J",
but then J' c I\ B c Bf O

Corollary 1.3. f:I=(a,b) > M definable
(i) The limits Ilirg f(x), zli_g{ f(z) and, for every c € (a,b), the limits Ilincl_ f(z),mlgrcl+ f(x)
exist in M U {—oc0, 00}
(i) If a,be M,g:[a,b] > M definable and continuous, then g has maximum
and minimum in [a,b]
1.2 Definable Compactness
Siehe Bachelorarbeit S.18

Definition 1.7. A definable set S ¢ M™ is definably compact if for every interval
(a,b) ind M and every continuous definable function v : (a,b) —» S ¢ M", the
limits lim v(z) and liri{ ~v(z) belong to S

Remark 1.5. If S is compact, then S is definably compact (?)

Lemma 1.3. If S ¢ M™ is definably compact, then m,-1(S) (projection onto
the last n — 1 coordinates) is definably compact



Proof. Let (a,b) be an interval in M and 7 : (a,b) - m,_1(S) ¢ M™! definable.
Note: for all z € m,-1(S), Sy :={y e M : (z,y) € S} is a definable subset of M.
Note that by the definable compactness of S, if (¢,d) c S, then ¢,d € S,, this
means that S, is closed and bounded. Thus, for every x € m,,_1(5), (z,inf S;) € S
Define: 7" : (a,b) = S, 2+ (7(z),inf S, (.)). By definable compactness lim._,,- 7'(2)
and lim,_p+7'(2) are in S. Hence lim,_, .- v(2) and lim,_4+ y(2) are in m,_1(S)

O

Theorem 1.2. Let S be a definable subset of M". S is definably compact iff S
is closed and bounded.

Proof. “<” by monotonicity theorem
“=" Assume S is definably compact.

e S is bounded: S is bounded iff the image of S under every projection onto
a single coordinate is bounded. Therefore by Lemma 1.3 we can assume
n =1, which is easy.

e S is closed: By induction on n.

n =1: easy.

n >2: Suppose that (z,y) € S\ S, where x € M" ™1 ye M.
Sei={zeM]|(z,2) €S} is closed

Sa: = Sf:v

There is a closed interval I with y € int/ and I n S, = @. Let
D c M™! be a closed box with z € intD. Let Sy := Su (D x I)

(z,y) €Sy
x € mp-1(S1) N mp-1(S1), since:

*

*

*

*

{z}xI)nS={x}x(InS;)
-z

*

(IH) 7,,-1(S1) is not definably compact
S1 is not definably compact = S is not definably compact

*

1.3 Cells and cell decomposition
(B.A. Seite 21)

Definition 1.8 (Cells). Let o € {0,1}", let ¢’ := ¢ |,,-1. A definable subset
C c M" is a o-cell, if one of the following holds:

(i) n=1,0(0)=0, C ={a} for some a e M
(ii) n=1, ¢(0) =1, C is a (non-empty) open interval

(iii) n>1,0(n-1)=0, C' =7m,_1 is a o’-cell and C' is the graph of a definable
function from C’ to M

(iv) n>1,0(n-1)=1,C"isac’-celland C = (f,g) o == {(z,y) |z € C', f(z) <y < g(x)}
for some definable f,g: C' - M



Lemma 1.4. If C c M™ is a cell and m <n, then 7, (C) and for any a € m,, (C)
the Cy = {ye M™ ™| (a,y) € C} are cells.

Proof. That 7,,(C) is a cell holds by definition.

Tr;l@ = 77772+1O"'O7r2:%oﬂ2—1' C= (fn—lvgn—l)ﬂzil(c‘)a 7T77qlz+2(c) = (fm+179m+1)7r;}”1(c)

o T (C) = (fmagm)'fr:},,(C)a aem,(C)
C, is the cell obtained as follows:

e Co=(fm(a),gm(a))
° Ql = (an+1(a7x)7gm+1(a7$))co c M2

° n-m-1= (fn—l(a7x)?gn—l(G’?x))cn—m—Q c M

O

1 <m < n let m), be the projection onto the first m coordinates. If ¢ :
{1,....,m} = {1,..,n} is strictly increasing m, : M"™ - M", (x1,...,2,) ~
(s y,,)

Definition 1.9. Let C c M™ be a o-cell
(1) Cis open if o(i) =1, Vien

n-1
(2) Yo= ) o(i)

i=0

(3) Let ¢y : {1,...,> 0} = {1,...,n} be strictly increasing enumeration of the
elements i € {1,...,n} such that o(i—-1) =1

Lemma 1.5. A cell C is an open cell iff it is an open set

Lemma 1.6. Let C c M™ be a cell. Then C, =TI, (C)c M>7 is an open cell
and 7, |c: C - C7 is a definable homeomorphism

Proposition 1.2. Every cell in M™ is definably connected

Definition 1.10. (1) Let C be a finite collection of cells in M™ and U ¢ M™.
C is a cell decomposition of U if C is a partition of U and, if n > 2, the set
[1,-1(C) ={I1,,.1(C) | C €C} is a cell decomposition of [],,_; (U)

(2) If Z c U, then U is compatible with Z if for every cell C € C either C ¢ Z or
CnZ=u

(3) If C and D are cell decompositions of U, we say that D is a refinement of
C, if D is compatible with every C € C

Example 1.1. Consider the set S = {(z,y) e R? | 2? +y* <1} (13 cells for all
of R?)

Remark 1.6. e Let C be a cell decomposition of U ¢ M™*™ and let x € M™.
Then C, = {C, | C € C}is a cell decomposition of U, = {y e M™ | (z,y) e U}

Proof. by induction on m O



o Let Z-1,...,7Z ¢ M™ and let B be the boolean algebra generated by
them. Then: a cell decomposition of M™ is compatible with the Z; iff it is
compatible with all atoms of B

Proof. Every atom B of B has the form B = By n...n By, where each B;
is either Z; or M" \ Z;

“<" clear.

“=" If C is compatible with the Z;, for each atom B of B

— if C contains every B;, then C' is contained in B

— If C is disjoint for some B;, then C is disjoint from B
O

Theorem 1.3 (Cell Decomposition Theorem). (Siehe “Zellzerlegung O-minimalen
Strukturen”)

(I),, LetSy,...,Sk c M™ be definable. Then there is a cell decomposition of M™
that is compatible with every S;

(I1), Let f:S — M be definable with S ¢ M™ definable. Then there is a cell
decomposition C of M™ compatible with S such that for every C €C, f ¢
18 COntinuous.

Proof. By induction

n =1 I, follows easily from the definition of o-minimality, 11, is the monotoni-
city theorem.

n>1
Lemma 1.7. Let S ¢ M™ be definable. The following are equivalent

(1) S is sparse if (Definition) int(S) =@ (Remark: A cell is sparse iff it
is not open)

(2) The set S":={xeM""|S, is infinite} is sparse
(3) S is nowhere dense, if (Definition) int(S) = @

In particular, a finite union of sparse subsets of M™ is sparse

Prooffl = 2 Assume S’ is not sparse. Then we can find an open box U c S’.
For any x € U, since S, c M is infinite, S, contains an interval.
Fix a decomposition of S, as a union of finitely many open intervals
and points. Let I, :=the first open interval in the decomposition.
. Jinf I, if infl,eM
fe = a point in I, otherwise
g sup I, if supl, e M
7 a point in I, greater than i, otherwise
i, and S, are definable functions on U. By II,,_;, there is a cell
decomposition C of M™ ™' with U such that i, |¢ and S, |c are
continuous for any C € C. Then there is an open cell C’ € C contained
in U (whence (i |¢r, Sz |or)cr is an open cell and is contained in S)



(Note: U cannot be a finite union of non-open cells)

BLabla, siehe Bachelorarbeit/Ziegler O

1.4 The Pila-Wilkie Theorem

Theorem 1.4. Let R = (R,<,+,-,—,0,1,...) be an o-minimal expansion of the
real field. Let X c R™ be definable in R. Then for every € > 0, there is ¢ =
c(X,e) >0 such that VT > 1 N(X'"T) < cT*®, where

o X=X X Xal9 - J{Y|Y c X is infitine, connected, semialgebraic}
e For X cR", N(X,T)=|X(Q,T)|:={zeX|xecQ"AH(z)<T}|

For g € Q", H(q) = max(g;), for q € Q*, H(q) := max(|al, [0]), if ¢ = §,gcd(a,b) =
1, H(0) =0.

Theorem 1.5 ((Uniform Pila-Wilkie)). Let R be an o-minimal expansion of
(R,<,+,-,—,0,1). Let (Xp)p be a definable family of subsets of R™. For every
e >0, there exists a family (Yy)p and ¢ = ¢c((Xp)p,€) such that for every be B

o Y, c X9
e VI >1,N(Xp\ Y, T) <T*

Uniform PW

|

Main Lemma

\

Uniform Parametrisation Theorem

|

Bombieri-Pila (Diophantine Geometry) Parametrisation Theorem

\/

Definition 1.11. A hypersurface of degree d in R™ is a set of the form {z e R™ | f(x) = 0}
where f € R[X] has degree d.

Definition 1.12. Let X c R",k € Z,. A partial k-parametrisation of X is a
function f:(0,1)4™* - X such that Va e N™X with |o| <k (Ja| == ¥ ay):

e f(®) is continuous

o || <1,Vze(0,1)
—
|yl==max]y|
Definition 1.13. A k-parametrisation of X is a finite set S of partial parame-
trisations of X such that Usegim(f) = X



Theorem 1.6 (Bombieri-Pila). Given 0 <m <n,d >0, there exist k = k(m,n,d) €
Zy,e =e(m,n,d) >0 and ¢ = c(m,n,d) > 0 such that if f:(0,1)™ - X is a

k-parametrisation of its image, then X(Q,T) cunion of < ¢T® hypersurfaces of

degree d. Moreover, € > 0 as d - oo.

Let M be an o-minimal expansion of a real closed field M.

Definition 1.14. e An element a € M is strongly bounded if there is N e N
such that |a| < N

e a e M" is strongly bounded if there is NV € N such that |a] := max|a;| < N

e A subset A of M™ is strongly bounded if there is N € N such that |a| <
NVaeA

Theorem 1.7 (Parametrisation Theorem). Let X be a strongly bounded defi-
nable subset of M™, for every k € Z,, there exists a definable k-parametrisation
of X.

Corollary 1.4. Let m,r > 1,X c (0,1)™ definable. Then there exist a finite
set S of functions (0,1)™X — X of class C" such that Uges im(¢) = X and
|¢>(a)(:c)| <1 for all ¢ € S, € N4™X wyith |a| <7 and x € (0,1)4mX.

Definition 1.15. A partial r-parametrisation of X is a C"-function f : (0, 1)dimX
X such that Yo € N™ with |a| <7, V2 |f(®)(2)| < N for some N e N.

proof of corollary. Let S be an r-parametrisation of X. Cover (0,1)9mX with

N9mX cubes of side 4 and for each cube K, let Ax : (0,1)%™X — K be the

obvious bijection. Let S := {(;So Mg | 6 € SK K is one of the cubes}, d:=dimX.
R? 3 Re & R™,
(¢

N 2 o
Txi(z)—w(k( )

6)\( )_i.aqﬁ
8(Eim_N Bacz

(A(2))

‘W"A)_(l)law<1.N
0%11q...0% 1y N 0171...0%xy =~ N

O

Corollary 1.5 (Uniform parametrisation Theorem). Letn,m,r >1, X c (0,1)™x
M™ definable. Then there exist N € N and for ally e M™ a finite set S, of N C"-
functions (0,1)mXy — X, such that (1) Uges, im(¢) = X, and (2) ¢ (2)] <1
for all y, ¢ € Sy, e € N#™Xv aith || <7 and = € (0,1)9mXs,

Proof. Suppose not, i.e. for every N € N there is yy € M™ such that ... but this
implies that there is y € M"™ such that “Parametrisation theorem does not hold
for X,”.

For N € Z,, let T'x(v) be the set of formulas expressing “for every set of
N functions satisfying (2), the union of their images is not X,”. Let I'(v) =

Un I (v).
= I'(v) is finitely satisfiable. Compactness: there is N' > M and y € A/ such
that N =T'(y). O

Main Lemma - siehe Skript.

10



Theorem 1.8 (Laurent '80s, conjectured by Lang for curves, “Manin Mumford
Conjecture for C,,,” (multiplicative group). Suppose V c (C*)? is an irreducible
subvariety. Then there are finitely many algebraic subgroups By, ..., By, of (C*)¢
and by, ..., b, € (C*)? such that

e b;B;, cV foralli

o Voud=U;bi(Binpu?) (where p = Tor((C*)4) and (B; n p) = Tor(B;)
and p :=roots of unityc C*)

Fact: Every algebraic subgroup of (C*)? is defined by a finite set of equations

of the form:

m min _
Y eyt =1lmy e

M1 Mkn _
Yy ey, k=1

and dim B = d - rkg(mi;). LB = {z|M-2=0} c C% dimLB = dimB. In
particular,

e If V contains no cosets of infinite algebraic subgroups, then V' npu? is finite

Proof. See “The case of Tori” onwards. (C*)?% = G2

m

O
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